TITLE	Secondary Education in North Carolina: A Report of Student Participation and Performance in Algebra I, Geometry, Algebra II, Biology, Chemistry, Physics, U.S. History, English I. Volume 1. End of Course Testing.
INSTITUTION	North Carolina State Dept. Of Public Instruction, Raleigh. Div. of Accountability Services/Research.
PUB DATE	Dec 90
NOTE	141p.
PUB TYPE	St.at.istical Data (110) -- Reports Evaluative/Feasibility (142)
EDRS PRICE	MFOl/PC06 Plus Postage.
DESCRIPTORS	*Academic Achievement; Algebra; Biology; Chemistry;
	Comparative Testirıg; English; Geometry; Mathematics
	Achievement; Physics; Public Schools; School
	Districts; Secondary Education; *Standardized Tests;
	*State Programs; Student Characteristics; *Student
	Participation; Tables (Data); *Testing Programs; Test
	Results; Trend Analysis; United States History
IDENTIFIERS	*North Carolina End of Course I'esting Program

Abstract

T Results from North Carolina's End-of-Course Testing Program in 1989-90 are presented. Participation, student characteristics, and achievement are summarized, largely in table form, for the following subject areas: (1) Algebra I, (2) Geometry, (3) Algebra II, (4) Biology, (5) Chemistry, (6) Physics, (7) U.S. History, and (8) English I. Background information is also given on the history, purposes, and development of the End-of-Course testing program. Of the 391,611 end-of-course tests taken in 1989-90, 919 were perfect scores, and 8,817 had no more than three items answered incorrectly. Many results from previous years are summarized, documenting modest gains over the last 5 years in the proportion of students taking advanced mathematics and in the percentage of students beginning an accelerated mathematics sequence in grade 8. Strengths and weaknesses of schools and school systems can be identified by examining relative performance on the 2,240 test items assessed in 1989-90. Eleven tables and 26 figures illustrate comparative performance for previous years, and 1989-90 results. The last two sections of the paper present eight tables of results for outstanding school systems, and five tables of results for public school systems, respectively. (SLD)

[^0]U.E. DEPANTMENT OF EDUCATION OHice of Educhtionel Remearth end Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)
"PERMISSION TO REPRODUCE THIS material has been granted by

This document has been reproduced as received from the person of orgenizulion originating it.
m.4.--- ${ }^{-L}$ nges heve been made to improve dic. quality.
ERIC

\qquad

TO THE EDUCATIONAL REgOURCES

Secondary Education in North Carolina:

A Report of Student Participation and Performance in

Algebra I
Geometry
Algebra II
Biology
Chemistry
Physics
U.S. History
English I

Volume 1

Prepared by Chris P. Averett, Ph.D.
Testing Section/Division of Accountability Services North Carolina Department of Public Instruction

Raleigh, North Carolina 27603-1712

Bob Etheridge
State Superintendent of Public Instruction

Published December 1990

ACKNOWLEDDGEMENTS

Development of a comprehensive report on student participation and performance in selected high school courses requires the effort of many individuals. I would especially like to thank Bob Evans, Martha Ward, and Eileen Williams for their careful reading of the report and thoughtful suggestions; George Stubblefield and Betty Marsh for computer programming; Kevin Kirby and Marilyn Zuckerman for graph preparation; Jennifer Johnson and Andrew McEachern for table preparation; and Faye Atkinson for report production.

FOREWORD

While there are notable exceptions, our high schools presently are not providing the high quality of education needed for students to achieve their personal best and to be prepared for an increasingly complex future.

In 1989 North Carolina dropped to the very bottom among all states and the Dist,rict of Columbia on the Scholastic Aptitude Test (SAT), providing an indication that secondary education in North Carolina needs attention. Our SAT scores improved slightly in 1990, indicating that improvements do happen when our teachers and principals target their efforts toward achieving a goal. But improvements related to SAT scores are only a small part of the complex enterarise making up secondary education today. We must broaden our focus to include the entire range of academic instruction and strengthen our requirements for graduation. All students will need preparation in basic subjects like algebra and biology, and our brightest students need to be challenged with more rigorous preparation like that found in Advanced Placement courses.

This report, Secondary Education in North Carolina: A Report of Student Participation and Performance in Algebra I, Geometry, Algebra II, U.S. History, Biology, Chemistry, Physics, and English I, is based on results from the state's End-of-Course Testing Program. It provides important baseline information on where we are as school systems begin implementing local Senate Bill 2 plans to improve student performance. There are examples of excellence. Several school systems provide Algebra I instruction to all or most students, and we need to learn from them. Over the last five years, there have been modest gains in the proportion of students taking advanced mathematics and science courses, and in the percentage of students beginning an accelerated mathematics sequence with Algebra I in the eighth grade. While I am pleased with these results, they are not enough. It is clear from the results described in this report that more students are capable of taking advanced courses than are currently enrolled in them.

This is an important report. It provides information that can be used in making policy and program decisions concerning our high schools. But, perhaps more importantly, it provides a baseline so that those decisions can be evaluated over time and we can adjust our course as necessary. Ultimately, information such as that provided here will be used to judge the effectiveness of our decisions in achieving our goal of successful secondary education for all students.

This report is one of several that the Department of Public Instruction will release this year to help educators in the state evaluate secondary programs and chart progress toward their goals. North Carolina Scholastic Aptitude Test Results, for example, describes achievement in higher order thinking skills as measured by the SAT. We will release eight End-of-Course subject area reports describing in more detail performance on the goals and objectives specified in the Standard Course of Study.

Executive Summary

This report describes participation, student characteristics, and achievement for eight high school courses assessed by the North Carolina End-ofCourse Testing Program in 1989-90. The subject areas are Algebra I, Geometry, Algebra II, Biology, Chemistry, Physics, U.S. History, and English I.
Background information on the history, purposes, and development of the End-ofCourse Testing Program is also given. Companion volumes are devoted to an indepth analysis of the participation and performance in each subject area. Highlights of this \lrcorner eport are listed below.

- Participation of North Carolina students in Geometry, Biology, and Chemistry appears to be typical of that in other states, but participation in Algebra I. and Physics is somewhat lower than that in other states.
- Participation in advanced math and science courses varies by sex, parental education, ethnic group, and post high school plans, and is widely variable among school systems. The variability in school system participation cannot be totally accounted for by differences in ability levels of school system populations.
- The estimated percentage of students taking the next course in the advanced math sequence is somewhat lower than the percentage passing the previous course. The estimated percentage taking the next course in the science sequence is dramatically lower than the percentage passing or achieving at least a "C" in the previous science course.
- The percentage of eighth-grade students in an accelerated math sequence, allowing for four additional advanced math courses, has grown since 1985-86 from 11.3 to 14.6 percent. However, it appears that only the very brightest students have the opportunity to be in this track, and 15 school systems do not offer Algebra I in the eighth grade.
- 1989-90 Algebra I, Biology, and U.S. History students on average are answering 2 to 3 more test items correctly than their counterparts at initial administrations several years ago. These improvements reflect about half a letter grade when placed on a grading scale. Thus, today's students are half a letter grade stronger in their content knowledge of these courses than students a few years ago. Furthermore, grading standards have become more stringent as overall achievement has increased.
- Average performance on all tests differ by sex, ethnic group, parental education, post high school plans, anticipated final grades, and school systen. The la:gest average differences by sex occur on the English I and Physics Tests, with females averaging higher scores in English I and males averaging higher scores in Physics. Average scores for black students and American Indian students are lower than those for white students and "other" students. Students whose parents have some education beyond high school tend to score higher, on average, than students whose parents are less educated. While
there are performance differences by grade level, one important finding is the relatively small difference in average scores for students taking Algebra I in regular one or two year programs.
- Statewide performance on End-of-Course Tests reflect the grading patterns of teachers for student performance throughout the school year, which is an indication of the validity of the tests.
- Average scores for students planning to attend four-year colleges are between the average for " C " and " B " students for the select courses of Algebra I, Geometry, and Algebra II. Average scores for these students are similar to the average for "B" students in the general courses of Biology and English I, and for the highly selective Physics course.
- Two indices of program effectiveness which reflect not only "what students know" but also "how many know it" are reported for all selective math and science courses. These indices, yield and effective yield, have generally increased since the beginning of assessment in each subject area. Gains in effective yield in Algebra I parallel the gains in yield, indicating that the additional students taking Algebra I are performing at acceptable levels.
- Outstanding programs are identified in terms of overall performance, participation, yield, effective yield, and change in these scores since the 1983-89 school year. The top 15 school systems are listed for each area. It can be seen from the overall list that many school systems are making improvements in one or more areas in secondary education. One hundred and five of the 134 school systems are in one or more categories of outstanding programs.
- Of the 391,611 end-of-course tests taken in 1989-90, 919 were perfect scores. On 8,817 tests students missed no more than 3 items.

Schools and school systems can identify strengths and weaknesses in their instructional programs by examining relative performance on the goals and objectives measured by the 2,240 test items assessed in 1989-90 across the eight subject areas. Comparative data on grading practices and participation rates give school systems additional information for planning and program evaluation. Beyond the use of test information for improved decision-making, evaluation, and planning, the end-of-course tests are part of three accountability programs. North Carolina's Program for Accreditation, Senate Bill 2, and the State Board of Education's Report Card for School Systems use student outcomes, including scores on end-of-course tests, in the accountability process.

Table of Contents

Page
Section I: Background
Introduction 1
Structure of End-of-Course Tests 2
Test Development Process 3
Section II: Participation and Performance in High School Courses
Participation5
Performance 14
Indices of Program Effectiveness:
Yield and Effective Yield 19
List of Tables

1. Estimated Percentage of Students Taking Selected Math and Science Courses over Four Years of High School: 1987-88 6
2. 1989-90 Participation Indices for Eight End-of-Course Subjects 7
3. Participacion Indices for High School Courses since 1985-86 8
4. Percentages of Students Taking the Next Course in the Math or Science Sequence 9
5. Participation by Grade Level in Algebra I in 1989-90 10
6. Characteristics of Students Taking Each Course 12
7. 1989-90 Participation in Algebra I and Chemistry, Grouped by Eighth-Grade Total Battery California Achievement Test Scores 14
8. Average Core Scores for End-of-Course Subjects Since 1985-86 15
9. Average Performance of Students in Each Course 17
10. 1989-90 Algebra I Performance by Type of Program 18
11. Yield and Effective Yield for Selective Courses Since 1985 86 20
Section III: Graphical Representations of Results
12. Estimated Percentage of Students TakingNext Course in Sequence23
13. Percent of Algebra I Students by Grade Level and Ethnic Group 24
14. Percent of Students in Each Course by Sex 25
15. Percent of Students in Each Course by Ethnic Group 26
16. Percent of Students in Each Course by Level of Parental Education 27
17. Percent of Students in Each Course by Post Graduation Intentions 28
18. Percent of Students in Each Course by Ethnic Group and Post Graduation Plans 29
19. Percent of Students in Each Course by Anticipated Final Grade 30
20. Plots of Participation Indices for 134 School Systems 31
21. Statewide Average Algebra I Scores: 1986-1990 32
22. Statewide Average Bio'ogy Scores: 1987-1990 33
23. Average Percent Correct on Core Tests by Sex 34
24. Average Percent Correct on Core Tests by Ethnic Group 35
25. Average Percent Correct on Core Tests by Parental Education 36
26. Average Percent Correct on Core Tests by Post High School Plans 37
27. Percent Correct Scores by Course and Letter Grade 38
28. Distributions of Algebra I Core Scores by Anticipated Final Grade: 1990 39
29. Average Algebra I Scores by Anticipated Final Grade: 1986-1990 40
30. Plots of Average Core Performance for 134 School Systems 41
31. Participation, Average Scores, Yield, and Effective Yield for Algebra I: 1986-1990 42
32. Richmond County Participation, Average Scores, Yield, and Effective Yield for Algebra I: 1986-1990 43
33. Average Algebra I Core Scores and Participation for School Systems Scoring at the 65th Percentile or Above on the 1989-90 8th Grade CAT 44
34. Average Algebra I Core Scores and Participation for School Systems Scoring at the 60th-65th Percentile on the 1989-90 8th Grade CAT 45
35. Average Algebra I Core Scores and Participation for School Systems Scoring at the 55th-59th Percentile on the 1989-90 8th Grade CAT 46
36. Average Algebra I Core Scores and Participation for School Systems Scoring at the 50th-54th Percentile on the 1989-90 8th Grade CAT 47
37. Average Algebra I Core Scores and Participation for School Systems Scoring Below the 50th Percentile on the 1989-90 8th Grade CAT 48
Section IV: Outstanding School Systems
1989-90 Performance on End-of-Course Tests 51
1989-90 Participation in Selective Courses 53
1989-90 Yield in Selective Courses 54
1989-90 Effective Yield in Selective Courses 55
Gain in Performance 1989 to 1990 56
Gain in Participation 1989 to 1990 57
Gain in Yield 1989 to 90 58
Gain in Effective Yield 1989 to 1990 59
Section V: Results for Public School Systems
Average Performance on 1989-90 End-of-Course Testsby School System61
Number Tested and Participation Indices for 1989-90 End-of- Course Tests 69
Participation in Next Course in Math and Science Sequence by School System 77
Yıeld and Effective Yield on Selective 1989-90 End-of-Course Tests by School System 85
Average Core Scores and Participation Indices for School SystemsGrouped by 1989-90 8th Grade California Achievement Test TotalBattery Scores93

Section I: Background

Introduction

In July of 1983 the North Carolina General Assembly directed the State Board of Education to define and to estimate the cost for a basic education program. The Basic Education Program which was adopted by the State Board of Education and funded by the General Assembiy includes support services, such as counseling and psychological services; promotion standards and graduation requirements; drop-out prevention and remedial and compensatory education services; programs for exceptional students; material support; staffing ratios at the school and district level; staff development; facility standards; and a Standard Course of Study that describes a common core of knowledge and skills to be available to all North Carolina students. The Basic Education Program, of which the Standard Course of Study is a part, describes "what each child in the North Carolina public schools is guaranteed." The Standard Course of Study in high school includes courses in the arts, communication skills, healthful living, mathematics, science, social studies, second languages, and vocational education. In an attempt to ensure that the state curriculum reflects a consensus view of what is considered basic education, the development process for the Standard Course of Study involved teachers and curriculum specialists from local school districts as well as state level staff and university specialists in the various curricular areas.

In order to assess the implementation of the Standard Course of Study, the Basic Education Program also includes curriculum testing in basic skills in grades 3, 6, and 8; minimum competency testing in high school; and end-ofcourse testing for high school courses. The purposes of the end-of-course tests are two-fold:

1. The tests provide information about each individual student's performance relative to that of other students in North Carolina.
2. The tests provide information about school and school system achievement on the subject area goals and objectives specified in the Standard Course of Study.

Based on statewide enrollment patterns and recommendations made by two commissions on education in North Carolina, the courses chosen for initial test development were Biology and Algebra I. In the spring of 1985, soon after the Standard Course of Study was written, item pools for these two courses were built. The results of the item development phase indicated that the Algebra I items were sufficient in quality and quantity to merit building end-of-course tests. The first end-of-course test of Algebra I was implemented in the 1985-86 school year. Since then, one or two courses have been added to the End-of-Course Testing Program each year. In 1989-90 eight courses were assessed: Algebra l, Geometry, Algebra II, Biology, Chemistry, Fhysics, U.S. History, and English I. Physical Science and Economic, Legal, and Political Systems in Action were field-tested in 1989-90 and will be implemented statewide in 1990-91. Items for Healthful Living wịl be
field-tested in 1990-91 with statewide implementation scheduled for the 1991-92 school year. The implementation schedule can be seen in Table 3. North Carolina is one of only a few states that have statewide assessments by subject area ial high school, and is the only state with a comprehensive assessment program in high school mathematics, science, social studies and communication skills.

Using the summary information about performance on goals and objectives, schools and school systems are able to analyze strengths and weaknesses in their instructional programs and allocate resources based on this information. Comparative data on grading practices and participaticn rates give school systems additional information for planning and program evaluation. Beyond the use of test information for improved decision-making, evaluation, and planning, the end-of-course tests are part of three recently-mandated accountability programs. North Carolina's Program for Accreditaticn, Senate Bill 2, and the State Board of Education's Report Card for Sck:ool Systems include student outcomes, including scores on end-of-course tests, in the accountability process. North Carolina's Basic Education Program promises students a similar basic education no matter where they live, and these tests were mandated to help ensure this promise.

The purpose of this report is to describe achievement, participation, and student characteristics in eight high school courses. Indices of effectiveness which combine achievement and participation are described for selective courses. Outstanding programs are identified, in terms of 1990 overall achievement, participation, effectiveness, and gain in all these indices. Finally, indices of achievement, participation, and effectiveness in all eight subjects are reported for the 134 North Carolina public school systems. Eight companion volumes will describe performance in detail for each subject, including achievement by subject area goals and objectives. These reports describe achievement in high school in relation to the prescribed Standard Course of Study. For further information about achievement in higher order thinking skills as measured on the SAT, refer to North Carolina Scholastic Aptitude Test Results, Volumes 1 and 2.

Report format. This report is divided into five sections. Background information on the End-of-Cou:se Testing Program is provided in Section I. Section II contains participation and performance information for the eight courses, followed by graphical representations of the data in Section III. Results are described in paragraph form in Section II and highlights accompany each graph in Section III. Outstarding programs are identified in Section IV and results for all school systems are provided in Section V.

Structure of End-of-Course Tests

In order to fulfill the dual purposes of student reporting and curriculum reporting, multiple test forms are administered in each classroom. Each test form consists of a core of items taken by all students, and one of three to five sets of variable items. For example, five forms of the Algebra I test are administered each year. The core contains 60 items and the variable seis contain 35 items, so
that a total of 235 items ($(60+(5 \times 35)$) are administered in each classroom. Individual student scores are based entirely on core items. The large number of test items provides broad curricalum coverage, and school and district summary reports include scores based on items maiched to particular goals and objectives. See the accompanying subject area reports for a description of achievement by goals and objectives and for school system performance on each goal.

During the test development process a large pool of test items are written so that diffurent forms of the tests can be administered each yea:. The core tests are statisticaily equivalent so that comparisons of performance on the core tests can be made across years. The use of different forms each year, the administration of over 145 test items in each classroom, and the match of test content to the Standard Course of Study virtually eliminates problems in assessing educational improvement associated with "teaching to the test."

Most North Carolina end-of-course tests are composed of multiple-choice test items written to reflect the Standard Course of Study for each subject. However, the Geometry Test requires students to write two proofs. The proofs portion of the Geometry Test is administered in late March and scored by specially trained teachers at centralized scoring sites using a focused holistic scoring method. Each student writes two proofs, one common to all students and one of four variable proofs, so that five proofs are administered in each classroom.

The three proposed English tests will differ from the other subject area tests. Each test will measure only a portion of the curriculum each year, but across the three courses (English I, II, and III), the major areas of the curriculum will be measured. Because English is a required four-year course sequence, the State Board of Education and the North Carolina Commission on Testing determined that the most efficient method for any in-depth assessment would be to concentrate on particular areas of the curriculum each year. This decision was made after consulting with writing specialists, an adviscry group of high school English teachers, an advisory group of university professors of English, and the Communication Skills and Testing Areas of the North Carolina Department of Public Instruction. Therefore, on the ninth-grade English I Test, definition and application of literary terms, proofreading and editing skills, and reading coniprehension is measured. For English II, the students will write two compositions, one common and one of four variable essays. Four types of writing will be assessed in each classroom each year: argumentative, expository, narrative, and descriptive. The essays, some of which will require literary a aalysis, will be scored for both content and conventions, including sentence formation, word usage, mechanics and spelling. The eleventh-grade English III tests will assess reading comprehension and literary analysis.

Test Development Process

The Standard Course of Study and the accompanying Teacher Handbook specify curricular goals and objectives by grade and subject. In order to ensure the instructional validity of the tests, teachers throughout the state are surveyed to determine which objectives are basic and important to measure on end-of-course
tests. After the survey, some objectives may be designated as relevant only to accelerated courses, and therefore are not tested on the end-of-course tests. Specially trained Nori' Carolina teachers in each subject area write test items to match specific objectives in the Teacher Handbook. Approximately 1200 items are written for each course so that multiple forms of each test can be developed. After editing, the items are evaluated by subject area specialists and teachers from all regions of the state for curriculum match, format and art, absence of bias, and technical quality. The items are placed into field test booklets and are administered in randomly selected North Carolina schools. After field testing, the items are subjected to statistical and psychometric analyses and further curricular review, which typically results in elimination of approximately 25 percent of the item pool, leaving about 900 items from which to build the core and variable portions of the end-of-course tests. Several versions of the Sinal tests are reviewed by North Carolina teachers and curriculum specialists before statewide administration. Alternate forms of the core tests are field tested during the first year of statewide administration. These forms are adjusted so that equivalent core tests are administered each year.

The development of the performance assessments in Geometry and English have involved advisory groups composed of siate level curriculum experts, local curriculum specialists, teachers from the various regions of the state, and university professors. The advisory groups determine the scoring criteria and score scale. Eighty English II prompts were administered during the 1988-89 school year in a statewide field test. The English II Advisory Group has reviewed responses to the prompts and developed scoring criteria so that a scoring guide could be distributed to English teachers in the fall of 1990, well before the test is administered statewide in 1991-92.

Section II: Participation and Performance in High School Courses

Parlicipation

In 1989-90 the End-of.Course 'Testing Program assessed three mathematics courses, three science courses, one social studies course, and one English course. The three mathematics courses, Algebra I, Geometry, and Algebra II, and two of the science courses, Chemistry and Physics, are relective; only a select subgroup of the student population rakes these courses. U.S. History and English I are required for graduation. Although Biology is not required for graduation, a life science is required and Biology is the life science taken by almost all high school students.

Modern technological society demands more advanced mathematics and science preparation for more students than has been required in the past. The need for better education in mathematics does not translate to better skills at computation and calculation. Rather, the demand is for the thinking, reasoning, and problem-solving skills that true mathematical understanding can impart, and for specific content knowledge in algebra, geometry, probability and statistics, and other advanced mathematics topics. Math courses, especially Algebra I, are now viewed as the "gatekeepers", stratifying students for future opportunities. As is noted in Everybody Counts ${ }^{1}$, mathematics needs to be seen as a pump, not a filter, enabling students to pursue opportunities, not closing off opportunities for them. In addition, understanding the biological and physical world not only mekes more informed consumers and voters, but also prepares students to make the tech ological advances that will enable the United States to compete successfully in today's world economy and to make the changes required for a safe environment and a higher standard of living for all.

Comparison with other states. Since siudents take selective courses at different grade levels, calculating the exact percentage of high school students who take each course is difficult. Without statewide individual student record databases, estimates of participation must be based on overall course enrollments and grade level enrollments. The State Scien e/Math Indicators Project sponsored by the Council of Chief State School Officers estimates participation by dividing the enrollment of all grades 9-12 students in a course by the total student enrollment for the grade level at which most students take the course. The report from this project gives the only state-by-state information on variations in math and science course enrollment; only 29 states, including North Carolina, were able to provide enrollment by courses. Table 1 gives the course enrollments for the southern states that provided data and the range and median for all 29 states.

[^1]Table 1. Estimated Percentage of Students Taking Selected Math and Science Courses over Four Years of High School: 1987-88.

State	Formal Math Level 1 (e.g. Algebra)	$\begin{aligned} & \text { Formal Math } \\ & \text { Level 2 } \\ & \text { (e.g. Geometry) } \end{aligned}$	Biology 1st Year	Chemistry 1st Year	Physics 1st Year
Alabama	57\%	45\%	100\%	36\%	23\%
Kentucky	68\%	57\%	100\%	43\%	13\%
Lcuisiena	98\%	86\%	94\%	E1\%	22\%
Mississippi	74\%	60\%	100\%	54\%	16\%
North Carolina	64\%	55\%	98\%	46\%	14\%
South Carciina	54\%	50\%	97\%	48\%	14\%
Virginia	77\%	61\%	99\%	56\%	24\%
Median*	79\%	55\%	98\%	43\%	19\%
Range*	47-98\%	28-86\%	65-100\%	27-56\%	10-29\%

[^2]Wased on the data from these states, it appears that North Carolina participation in Geometry, Biology and Chemistry is typical of participation in other suates, but that participation in Algebra I and Physics is below that in other states. Louisiana requires Algebra I for all students and its participation rate is $\mathbf{9 8 \%}$. North Carolina is always lower in participation than Virginia, a southern state with comparable percentages of students taking the SAT and substantially higher SAT scores. It should be noted that these participation rates do not taike into account curriculum variations across states or differences in achievement, and that the participation rate for Algebra I is underestimated for North Carolina, and perhaps for other states, because eighth-grade students may not be included. Also, since the enrollment in the grade level which is typical for students taking the course is used as the denominator in estimating participation, participation rates are not comparable across subjects. Dropout in the upper grades means that the denominator used for the very advanced courses is much smaller than that for the courses taken earlier in high school careers.

Other participation indices. An alternative method is to base participation on eighth-grade final average daily membership (ADM) for the year in which the largest group of students taking the course was in the eighth grade. ${ }^{1}$ For

[^3]example, for Algebra I in 1989-90 the eighth-grade ADM for 1988-89 is used since ninth-grade is the typical grade in which students take Algebra I. ${ }^{1}$ Table 2 compares the 1989-90 participation for the eight courses when calculated by both methods.

Table 2. 1989.90 Participation Indices for Eight End-of-Course Subjects

Subject

Typical Grade Level

Participation Inder 1^{2}
Participation Index 2^{3}

Algebra I	9	72.3%	68.8%
Geometry	10	53.1%	56.6%
Algebra II	11	41.7%	50.9%
Biology	10	87.9%	93.8%
Chemistry	11	38.7%	47.3%
Physics	12	11.5%	15.2%
English I	9	90.3%	85.9%
U.S. History	11	76.2%	93.1%

Participation Index 1, based on eighth-grade ADM, is lower than Index 2 for all subjects except Algebra I and English I. For the six other subjects the grade levels used for the denominator in Index 2 have experienced various amounts of dropout. English I and Algebra I are based on the ninth grade which has a large ADM figure due to high retention rates the first year of high school. Participation Index 1 can be interpreted as an estimate of the percentage of students who are about to enter high school who will take each course prior to graduation. Index 2 is influenced by dropout rates but reflects the percentage of currently enrolled students who take each course. Index 1 will be used throughout the remainder of this report. For comparison purposes, both participation indices are given for each school system in Section V. 4

Participation over time is given in Table 3. Since the beginning of assessment in each subject area there has been a slight increase in participation indices for selective courses (Algebra I, Geometry, Algebra II, and Chemistry) and a slight decrease in participation in courses taken by all students (U.S. History and Biology). Decreases in the numbers of students tested reflect declining cohort sizes.

[^4]Table 3. Participation Indices for High School Courwes Since 1985-86

ELP is a ninth grade course: Economic, Legal, and Political Syatems. Gray areas indicate years prior to implementation for each subject. Participation index in based on 8th-grade ADM when most students in the course were in the 8th grade.

Participation in successive courses. As mentioned above, Algebra I acts as a screen for participation in upper level math courses, and in many cases as a screen for participation in selective science courses. The typical course sequence for math is Algebra I followed by Geometry and then Algebra II. For science the typical sequence is Physical Science, Biology, Chemistry, and then Physics for a select, small group. Since each course may act as a screen for the next, i.e. only successful students in the lower level course are permitted to take the next course in the sequence, participation can also be viewed in terms of the percentage of Algebra I students taking Geometry, and so forth. The 1989-90 school year was the first in which a group of Algebra I students and Biology students could be followed through the sequence. Table 4 gives the percentages for the first course in the sequence based on the eighth-grade ADM. Then each successive course is based on the enrollment in the previous year's lower level course. Percentages of students estimated to receive a " D " or above in each course are given for comparison.

Table 4. Percentages of Students Taking the Next Course in the Math or Science Sequence. ${ }^{1}$

\quadSubject/ Grade Level	Year	Number Tested	Percent Taking Next Course	Percent Passing ${ }^{2}$
Eighth-grade ADM	$1986-87$	84722	70.5%	
Algebra I	$1987-88$	59723	72.5%	84.5%
Geometry	$1988-89$	43325	81.5%	87.5%
Algebra II	$1989-90$	35310		
Eighth-grade ADM	$1985-86$	88223	87.5%	87.3%
Biology	$1987-88$	77154	43.2%	80.4%
Chemistry	$1988-89$	33352	30.5%	90
Physics	$1989-90$	10166		

The estimated percentage of students taking the next course in the math sequence is somewhat lower than the percentage passing the previous course, and is dramatically lower for advanced science courses. It is estimated that less than half of those who pass Biulogy continue on to take Chemistry. Although approximately 90 percent of Chemistry students pass, and approximately 70 percent make a " C " or better, it appears that only about 30 percent of Chemistry students go on to take Physics.

[^5]Factors affecting participation. Student participation in the selective matl/ and science courses appears to be determined by a complex set of factors, including student attitudes and aspirations, peer influences, counseling, student ability, administrative selection criteria, parental involvement, course availability, expectations of teachers, counselors, and administrators, and community influences. The section below will illustrate how participation in these courses varies by grade level in school, sex, ethnic group, parental education, post high school plans, and school system.

Variations in grade levels that students take particular courses generally occur in selective math courses. Some students are on an accelerated track in which they take Algebra I in the eighth grade, Geometry in the ninth, and Algebra II in the tenth. Students who are in the "fast track" not only have opportunities to learn more advanced mathematics at an earlier age but also have opportunities to take additional advanced math courses in their junior and senior years in high school. Students who begin with Algebra I in the ninth grade can take three additional matn courses in high school. Students who are in the tenth grade may be in the second year of a two-year Algebra I course, or may be just beginning to take the higher mathematics sequence. Participation by grade level in Geometry and Algebra II parallels that established in Algebra I.

Table 5. Participation by Grade Level in Algebra I in 1989-90

\quadGrade Level	Final ADM	Algebra I Students	Percent of ADM	Percent of Algebra I Students
Eight	78474		11475	14.6%
Nine	85908	23778	27.7%	19.4%
Ten	77082	17363	22.5%	40.2%
Eleven	69337	4938	7.1%	29.4%
Twelve/Other	66802	1531	2.3%	8.4%
TOTAL		59085		2.6%

Statewide, the proportion of students who begin an accelerated math sequence with Algebra I in the eighth grade has increased from 11.3 percent to 14.6 percent since 1985-86. Since approximately 15 percent of North Carolina's eighth-grade students score at or above the 90th percentile on the math section of the California Achievement Tests (CAT), it appears that only the very brightest of Nurth Carolina students have the opportunity to take four additional advanced math courses in high school.

The opportunity to participate in an accelerated math sequence varies by school system. Although the number of school systems in North Carolina who do not offer Algebra I in the eighth grade has declined since 1985-86, 15 school systems still did not offer Algebra I to eighth graders in 1989-90. Over half of the school systems with no eighth-grade Algebra I enrollment are in the northwest and western regions of the state. In 57 school systems more than 20 percent of
eighth graders were enrolled in Algebra I; and, in 12 school systems more than 30 percent of eighth graders took Algebra I.

The likelihood of participating in an accelerated math sequence also varies by ethnic group. Figure 2 in Section III shows the differences among ethnic groups in each grade level for Algebra I. Although 25.5 percent of Algebra I students are black, only 13.4 percent of eighth grade Algebra I students are black. Approximately 47.7 percent of eleventh-grade Algebra I students are black; these students have begun the math sequence too late in their high school careers to complete the three advanced mathematics courses required by the 16 campuses of the North Carolina university system prior to graduation. Also, among white Algebra I students, 22.9 percent are in the eighth grade, while only 10.2 percent of black Algebra I students are in the eighth grade.

In Table 6 enrollment in the eight courses is broken down by sex, ethnic group, parental education, post high schocl plans, and anticipated final grade. Figures 3 through 8 give graphic representation to the data in Table 6.

Except for Physics, females are overrepresented in the selective math and science courses when compared with what would be expected in the K-12 student population. Between 53.5 percent and 56.1 percent of Algebra I, Geometry, Algebra II, and Chemistry classes are female, while 45.3 percent of Physics classes are female. Females and males are equally represented in the survey courses taken by most students.

Participation in selective courses varies by ethnic group. Black students represent slightly over 30 percent of the K-12 population, and close to 30 percent of the enrollment in Biology, English I, and U.S. History. As the courses become more advanced, fewer black students are enrolled. For example, while 29.0 percent of Biology students are black, 23.1 percent of Chemistry students and only 14.3 percent of Physics students are black. Compared to their distribution in the school population, it appears that black students are underrepresented and white students are overrepresented in the selective math and science courses.

Parental education also appears to have an impact on participation in selective math and science courses. In the courses taken by most students, between 55 and 60 percent of the students have one or more parents with education beyond high school. About 65 percent of Algebra I students have one or more parents with beyond high school education, and the percentage increases as the courses become more advanced, with almost 82 percent of Physics students having one or more parents educated beyond high school.

Students recorded their post high school plans when they took the end-ofcourse tests. As would be expected, a higher percentage of students in the advanced courses plan to attend a Oour-year college than in the more general courses. ${ }^{1}$ While approximately half of Biology and English I students intend

[^6]Table 6. Characteristics of Students Taking Each Course
Algebral Geometry Algebrall Blology Chemistry Physics Englishl U.S. History
Number Parcent Number Percent Number Percent Number Percent Number Percent Number Percent Number Parcent Number Percent

to go to a four-year college, more than 70 percent of Algebra II and Chemistry students, and more than 85 percent of Physics students, have such plans. Also, more than 65 parcent of students in general courses intend to further their education in somefashion, in addition to more than 14 percent who are undecided and may yet choose to further their education. The percentage of undecided students also decreases as the courses become more selective. Among the census courses of Biology and English I more than 5 percent plan to work after graduation, and more than 8 percent intend to enlist in military service.

Post high school plans of students enrolled in various high school courses appear to vary by ethnic group. Figure 7 displays the percentages of black and white students in each course with various post high school plans. In Algebra I, Geometry, Chemistry, and English I the percentage of black scudents in each course who plan to attend a four-year college is similar to the percentage of white students with such plans. The percentage of black students taking the most advanced math and science courses who plan to go to college is slightly higher than the percentage of white students. In general, a higher percentage of white students than black students plan to attend a community college, while a higher percentage of black than white students plan to enlist in the military. In all courses, smaller percentages of black students are undecided about their post graduation plans.

Except for the highly selective Physics classes, grading patterns appear to be consistent across high school subjects. Algebra I has the highest percentage of " Fs ", reflecting its perceived status as a screening course for other subjects. A higher percentage of students receive "Fs" in this relatively selective course than in the general courses of Biology, English I, or U.S. History. There is a slight tendency for higher percentages of students to receive higher grades in selective courses than in general courses. However, even though only about 43 percent of Bioiogy students take Chemistry, similar percentages fail the course -- 9.4 percent for Chemistry and 11.9 percent for Biology.

Finally, participation varies by school system. For example, in 1989-90 participation in Algebra I varied from an estimated 43.6 percent to 100.0 percent, and between 17.1 percent and 65.4 percent for Chemistry. While the median participation index for Algebra I was about 70, 10 percent of school systems had participation rates under 57 and 10 percent had rates over 85 . Participation indices for all school systems are reported in Section V and are displayed graphically in Figure 9. The ranges depicted in the graph show that even among general courses there is some variation in participation. This variation is much narrower than that for Algebra I and other selective courses. One might speculate that the wide variation is due to differences in ability among students in the school systems. The table below gives the range and the median participation rates for the two initial selective math and science courses for school systems grouped by average performance on the eighth-grade California Achievement Tests.

Table 7. 1989-90 Participation in Algebra I and Chemistry, Grouped by Eighth-Grade Total Battery California Achievement Tests Scores

Total Battery		1 gebra			hemist		Number
Percentile Range	Low	Median	High	Low	Median	High	of LEAs
65 and Above	50.0\%	79.2\%	100.0\%	28.9\%	39.2\%	58.9\%	18
60-64	50.0\%	73.8\%	100.0\%	18.7\%	44.2\%	65.4\%	27
55-59	50.0\%	69.7\%	93.4\%	19.2\%	32.7\%	57.7\%	35
50-54	51.4\%	67.2\%	84.2\%	21.1\%	35.9\%	51.6\%	29
Less than 50	43.6\%	67.7\%	92.2\%	17.1\%	30.9\%	58.8\%	25

This table illustrates that among low achieving student populations and high achieving student populations the range in participation is almost as great as that among all school systems. Therefore, even when controlling for average achievement levels for school systems the variation in participation is still quite large. Participation and performance for all school systems grouped by the above performance ranges are displayed in Figures 22-26 and are reported in Section V. School systems are listed in alphabetical order within each group.

Performance

The purposes of the end-of-course tests include providing a student score and a summary score which are comparable across years and can be used for student grading and school and school system accountability. The tests do not provide information about how North Carolina students are doing compared with other students in the nation; rather, they measure the implementation of the goals and objectives in the Standard Course of Study. The core tests are designed to average between 60 and 65 percent correct at the initial administration. Therefore, scores at the initial administration of tests, such as the Physics and English I Tests in 1989-90, do not provide much information about statewide achievement, but give a benchmark for comparisons in future years, and a standard to which school and school system achievement can be compared.

Statewide performance in all courses. Average scores at the 1989-90 administration ranged from 61.2 average percent correct in Biology to 70.3 in U.S. History. ${ }^{1}$ Table 8 displays the core scores for all end-of-course tests since the first Algebra I Test was administered in 1985-86. Gains are exhibited for five of the six subjects tested in both 1988-89 and 1989-90. Except for Algebra II, tests which have been administered three or more years have shown average gains of 2 or more test items since their initial administrations. For example, 1989-90 Algebra I students answered an average of 2.9 more test items than 1985-86 Algebra I students. Average scores for English I and Physics were within the range expected for first administrations.

Average scores since 1985-86 for Algebra I and since 1986-87 for Biology are displayed graphically in Figures 10 and 11. The dotted lines on the graphs show

[^7]Table 8. Average Core Scores for End-of-Course Subjects Since 1985-86

F.LP is a ninth grade course: Economics, legal, and Political Syatems. Gray al .s indicate years prior to implementation for each aubject.

Ithe to administrative differences between the 1987 and subsequent testings, scores on the 1987 test cannst be directly compared with scores on the subsequent tests.
the average scores for students receiving various anticipated final grades at the first administrations. ${ }^{1}$ These average scores for various letter grades can be used to interpret differences in average core scores either across time or across groups. For example, in 1985-86 the average Algebra I score for "B" students was 42.2 and the average for "C" students was 37.8. Since tnat time the statewide average for all Algebra I students has increased from 37.7 to 40.6 , or more than half : letter grade. In other words, according to 1985-86 standards, average performance in 1989-90 was at "C+" or "B-" levels while average performance in 1985-86 was at a "C" level (see grading discussion below).

Performance by subgroups of students. Average scores for all courses are reported in Table 9 by grade level, sex, ethnic group, parental education level, post high school plans, and anticipated final grade. Graphs depicting score differences among these groups are presented in Figures 12 through 16. The largest performance differences by students across grade levels occurs in courses in which students may be in dissimilar tracks. For example, in the math sequence there are large differences between eighth-grade students, who are on an accelerated track, ninth-grade students, who are on the traditional track, and tenth grade students, who are on a slower track or may be retaking the course. Typically, eighth-grade students are a highly select subgroup of eighth-grade students, and therefore are expected to outperform other students. These differences are paralleled in Geometry and Algebra II. In the science sequence, in some school systems high achieving students do not take Physical Science in the ninth grade. Instead, they take Biology in the ninth grade, followed by Chemistry in the tenth and then take Physics to fulfill the physical science requirement. The select nature of these students is reflected in the large score differences between different grade levels in Biology and Chemistry.

Average differences by sex are minimal for Algebra I, Algebra II, and Biology. The largest sex differences in performance occur in English I and Physics; in English I females average 7 percentage points higher than males and in Physics males score an average of 6.5 percentage points higher than females. On the remainder of the courses, Geometry, Chemistry, and U.S. History, males average several percentage points higher than females.

Average differences by ethnic group occur for all subjects. White students and "other" students scored higher on average than black students and American Indian students on all end-of-course tests.

Parental education differences on end-of-course tests are similar to those on other tests. Although there are some differences between students whose parents are tigh school graduates and students whose parents have less education, the largest difference occurs between students who have parents educated beyond high school and students with less educated parents. The differences among parental education levels are somewhat smaller in the selective courses.

[^8]

ERIC

Students in all courses except U.S. History were asked to record their post high school plans when they took the end-of-course tests. As expected, students who plan to continue their education in a four-year college score substantially higher on average than students with other post high schnol plans. In the selective math courses there is very little difference in average performance among students who intend to work, enlist in the military, attend trade or business schools, attend community colleges, or attend private junior colleges.

Currently, Algebra I is the only end-of-course subject that is offered over either one or two academic years. The two-year course allows students to take additional time to master the same course content. As can be seen in Table 10, students in two-year Algebra I programs do not score substantially lower than regular Algebra I studencs.

Table 10. 1989-90 Algebra I Performance by Type of Program

Program	Number Tested	Average Core	Average Pencent Correct
o-Year	10,526	37.0	61.6%
gular	43,529	40.5	67.5%
nors	4,585	49.8	83.0%

At the time of test administration teachers recorded the final grades that they anticipated giving students. The average scores by anticipated final grade are reported in Table 9 and displayed in Figure 16. There is a consistent difference between grade groups of about 4 to 5 raw score points for all subjects with tests of 56 to 66 items, and about 8 to 9 raw score points for the 100 -item English I Test. This pattern is an indication of test validity in that the results parallel the grading practices of teachers for student work over the course of the school year.

Although there are consistent differences in average scores for the grade groups, wide variations exist in scores for students receiving each grade. Figure 17 displays the variations in scores for Algebra I students. The range of scores reflects differences in grading standards across tracks, teachers, schools, and school systems. ${ }^{1}$ In fact, grading standards appear to have changed somewhat since the implementation of the first end-of-course test. Figure 18 shows the average scores for each grade group in Algebra I since 1985-86. As overall scores have increased, so have scores for each grade group. The increases for each grade group indicate that grading standards for students have become more stringent as overall achievement has increased.

[^9]The consistent differences among grade groups on the end-of-course tests help inierpret differences in scores over time and among groups. For example, the average scores for college-bound students in the selective courses of Algebra I, Geom/stry, Algebra II, and Chemistry are between the overall average for "C" and " B " students. In other words, in these courses college-bound students are scoring on average at a " $\mathrm{C}+$ " or " $\mathrm{B}-$ " level. In the general courses of Biology and English I , average scores for college-bound students are at the " B " average score level.

Finally, average performance on end-of-course tests varies by school system. See Section V for the average core scores for all school systems on all end-of-course tests. The widest variations in school system performance occurs among the selective courses in math and science (see Figure 19), with narrower differences among most school system averages occurring for the general courses of Biology, English I, and U.S. History. For example, in U.S. History the range of average scores for the miuule 50 percent of school systems is about 3 test items (5 percentage points), or slightly more than half a letter grade on the grading scale. In Algebra II the range for the middle 50 percent of school systems is about 5 items (about 10 percentage points), or an entire letter grade.

Indices of Program Effectiveness: Yield and Effective Yield

Since selective math and science courses are not taken by all students, overall performance in these subjects may be related to participation within school systems or within the state. For example, if only the top 20 percent of students take a course, scores will necessarily be higher than if the top 50 percent take the course. Yield is an index of the effectiveness of a program which takes into account both participation and performance. It is based on the concept of yield presented in The Underachieving Curriculum and suggests that indices of program effectiveness should reflect not only "what students know" but also "how many know it". ${ }^{1}$ Yield is calculated for all selective course by multiplying the participation in a course by the average percent of core items answered correctly and then multiplying by 100 . Yield would be 100 percent if all students took a course and all students achieved a perfect score. Statewide yield scores for selective courses are presented in Table 11 below.

[^10]Table 11. Yield and Effective Yield for Selective Coursea Since 1985-86

Gray areas indicate years prior to implementation.

As would be expected, yield scores are progressively lower as courses become more selective. A gain of 6.3 points in yield has occurred for Algebra I since 198586.

Effective yield is a similar index but it counts as "pu- icipating" in the course only those students whose achievement is above a cutoff point estimating that they will pass the course. Effective yield will be the same as yield only when all students taking a course achieve at or above the estimated passing score. While yield increases dramatically when participation increases, effective yield increases only when participating students achieve above a passing level. Statewide effective yields for selective courses are reported in Table 11. Yield and effective yield for all school systems are reported in Section V.

Figure 20 displays the trends in participation, average scores, yield, and effective yield for Algebra I since 1985-86. All indices have increased over the past 5 years. Gains in effective yield parailel gains in yield, indicating that the additional students taking Algebra I are capable of performing at acceptable levels.

Since the beginning of the End-of-Course Testing Program with the statewide Algebra I assessment in 1985-86 participation in Algebra I has been a concern. As mentioned above, Algebra I is an important course in high school; it is a gatekeeper for almost all advanced study in math and science. Several school systems have set goals for increased participation and have made progress in attaining those goals. For example, Richmond County set a criterion level at the 50th percentile on the mathematics section of the California Achievement Tests taken in the eighth grade ${ }^{1}$, encouraging enrollment of all students who score

[^11]above this point. Seeing that enrollment siill was not at expectation, they enrolled all students between the 35th and 50th percentile in the two-year Algebra I program. Participation increased from 47.1 to 71.9 percent during the period from 1986 to 1990, and average scores increased from 32.2 to 37.3. Trends in participation, performance, yield, and effective yield for Richmond County are displayed in Figure 21.

Section III: Gre hical Representations of Results

Figure 1. Estimated Percentage of Stardents Taling Neat Course in Sequence

Observations:

- The estimated percentage of students taking the next course in the math sequence is somewhat lower than the percentage passing the previous course.
- The estimated percentage of students taking the next course in the science sequence in dramatically lower than the percentage passing the course.
- Less than half the students taking Biology go on to take Chemistry, and less than one third of the students taking Chemistry go on to take Physics.

Notes:

The typical math sequence is Algebra I -- Geometry -- Algebra II. The typical science sequence is Biology -- Chemistry -- Physics.

Data Source: Table 4

Figure 2. Percent of Algebren I Students by Grade L Nvel and Ethnic Group

Observations:

- Although about 25 percent of Algebra I students are black, less than 14 percent of eighth-grade Algebra I students are black.
- The opportunity to participate in an accelerated math sequence by taking Algebra I in the eighth grade appears to vary by ethnic group.
- Almost half the 4,938 students taking Algebra I in the eleventh grade are black. Students not completing Algebra I until the eleventh grade cannot complete the three year math sequence required by the University of North Carolina system prior to graduation.

Data Source: not in text. Table 5 gives overall proportions of Algebra I students by grade level.

Figure in ithroent of Students in Frech Courre by Sex

Observations:

- Except for Physics, a higher percentage of females than males are enrolled in selective math and science courses.
- Females and males are equally represented in the general courses taken by all students: Biology, U.S. History, and English I.

Data Source: Table 6

Figure 4 Percent of Students in Fach Courre by Ethnic Group

Observations:

- Black students represent slightly over 30 percent of the K-12 membership, and close to 30 percent of the enrollment in in the general courses of Biology, English I, and U.S. History.
- Based on their representation in the overall student population, black students are less likely than white students to be enrolled in selective math and science courses.
- Based on their representation in the overall student population, "other" students are more likely to be enrolled in selective math and science courses.
- As the courses become more advanced in the selective math and science sequences, fewer black students are enroiled.

Data Source: Table 6.

Firure 5. Percent of Students in Froh Courre by Levol of Parental biducation

Observations:

- In the general courtes between 55 and 60 percent of students have one or more parents with education teyord high school.
- About 65 percent of Algebra I students have parents with beyond high school education, and the percentage increases as the courses become more advanced, with almost 82 percent of Physics students heving parents with some education beyond high school.
- Students whose parents have no more than a high school education are less likely to take the advanced math and science courses.

Data Source: Table 6.

Observations:

- A larger proportion of students in the advanced math and science courses intend to go to college than in the more general courses.
- While about 50 percent of the students in the general courses intend to go to college, more than 70 percent of Algebra II and Chemistry students, and more than 85 percent of Physics students, plan to go to college.
- More than 65 percent of students in general courses plan to further their education after high school, and more than 14 percent remain undecided and may yet choose to continue their education.
- The percentage of undecided students decreases as the courses become more selective.

Note:
Post high school plans were not collected for U.S. History students.
Data Source: Table 6.

Figure 7. Percent of Bturdents in Fiech Course by Ixthicic Group and Poet Graduation Plans

Observations:

- In Algebra I, Geometry, Chemistry, and English I there is no difference between black and white students in the proportion who intend to go to college.
- In the most advanced math and science courses, Algebra II and Physics, a higher percentage of black students plan to attend college.
- In general, a higher percentage of white students than black students plan to attend a community college, while a higher percentage of black students than white students plan to enlist in military service.
- In all courses, smaller proportions of black students are undecided about their post graduation plans.

Note:

Post high school plans were not collected for U.S. History students.
Data Source: not in report. Table 6 contains the overall propotions of students for each post graduation plan.

Figure \& Percent of Students in Ench Cindirk by Anticipated Final Grade

Observations:

- Except for Physics, grading patterns are consistent across high school subjects; similar percentages of students are receiving each letter grade.
- Algebra I has a somewhat higher failure rate, reflecting its perceived status as a screening course for other advanced math and science courses.

Data Source: Table 6.

Figure 9. Plots of Participation Indices for 134 School Systems

Observations:

- The variation in participation indices among the 134 school systems tends to be narrower for the general courses, and wider for the more advanced, selective courses.
- The widest variation in participation occurs for Algebra I and Geometry. Ten percent of school systems have Algebra I participation rates over 85 and 10 percent have participation rates under 57.
- Physics is a very selective course, with less than 10 percent of school systems having participation rates over 20.

Note:

Box and whisker plots illustrate not only the typical values of mean and median, but also the range in values. They are useful in evaluating the scope of variation among groups, and for comparing the high and low values for different groups.

Data Source: Section V.

Figure 10. Statewide Averace Algebra I Scares: 1986-1990

Observations:

- Average core scores in Algebra I have increased from a "C" level to a "C+" or "B-" level according to 1985-86 grading standards.

Notes:

Teachers reco: ded the final grade they anticipated giving each student at the time of the test admuistration. The dotted gray lines indicate statewide average scores for each anticipated final grade for the 11 $\delta 5-86$ administration of the Algebra I Test, and reflect grading standards at the ini'ial administration. As can be seen in Figure 18 below, the grading standards ha e increased with each test administration.

Data Source: Table 8.

Figure 11. Statewide Average Biology Scores: 1887-1900

Observations:

- Average core scores in Biology have increased from a "C" level to a "C+" level according to $1987-88$ grading standards.

Notes:

Teachers recorded the final grade they anticipated giving each student at the time of the test administration. The dotted gray lines indicate statewide average scores for each anticipated final grade for the 1986-87 administration of the Biology Test, and reflect grading standards at the initial administration. As can be seen in Figure 18 below, the grading standards increase with each test administration.

Data Source: Table 8.

Figure 12. Average Percent Correct on Core Terts by Sex

Observations:

- Average differences by sex are minimal for Algebra I, Algebra II, and Biology.
- The largest sex differences in performance occur in English I and Physics, with females averaging about 7 percentage points higher in English I and males averaging about 6.5 percentage points higher in Physics.
- Males average several percentage points higher than females in Geometry, Chemistry, and U.S. History.

Data Source: Table 9.

Figure 18. Averape Percent Correct on Core Teets by Ethnic Group

Observations:

- Average differences by ethnic group occur for all subjects.
- On averpge, white students and "other" students scored higher than black students and American Indian students.

Data Source: Table 9.

Figure 14. Average Percent Correct on Core Teate by Parental Education

Observations:

- Average score differences by parental education occur for all subjects.
- The largest difference is between averages for students whose parents have some education past high school and all other students.
- In the select math and science courses the differences among students whose parents have a high school education or less are small.

Note:
Students recorded the education level of the parent with the most education.
Data Source: Table 9.

Figure 15. Averape Percent Correct on Core Teets by Poet Bigh School Plans

Obeervations:

- Students who plan to continue their education in a four-year college score substantially higher on average than students with other post high school plans.
- In the selective math courses there is very little difference in average performance among students who intend to work, enlist in the military, attend trade or business schools, attend community colleges, or attend private junior colleges.

Data Source: Table 9.

Fibure 16. Percent Correct Scorea by Course and Letter Grade

Observations:

- There is a consistent difference in average scores for each anticipated final grade across all subjects, which is an indication of test validity, in that the results parallel the grading practices of teachers for students' work over the course of the school year.
- The range of average scores for each letter grade is narrower for the two selective science courses than for the other courses.

Notes:

Teachers recorded the final grade they anticipated giving each student at the time of the test administrations.

Data Source: Table 9.

Figure 17. Distributions of Algebra I Core Scores by Anticipated Final Grade: 1990

Observations:

- The box and whisker plots illustrate the variation in anticipated final grades when compared with a common standard: scores on the Algebra I Test.
- The range of scores reflects differences in grading standards across tracks, teachers, schools, and school systems.

Notes:

Box and whisker plots illustrate not only the typical value such as a mean or median, but also the range in values. They are useful in evaluating the variation among groups, and for comparing the high and low values for different groups.

The companion subject area volumes contain average scores for each letter grade group and percentages of students attaining each letter grade for all public school systems. In those volumes it can be seen that although there are differences in standards across school systems, within most school systems the average scores for each letter grade group differ in a systematic way, paralleling performance on the end-of-course tests.

Data Source: not in text

Figure 18. Average Algebra I Scores by Anticipated Final Grade: 1886-1890

Observations:

- An increase in average scores for each letter grade has paralleled the increase in overall average scores.
- It appears that grading standards for students have become more stringent as overall achievement has increased.

Notes:

Teachers recorded the final grade they anticipated giving each student at the time of test administration.

Data Source: Reports of Student Performance for Algebra I, 1986 through 1989.

Figure 19. Plot of Average Core Performance for 134 School Systems.

Observations:

- The widest variations in school system performance occur among the selective courses in math and science, with narrower differences among most school system averages occuring for the general courses of Biology, English I, and U.S. Histury.
- For U.S. History, the range of average scrres for the middle 50 percent of school systems is about 3 test items (5 percentage points), or slightly more than half a letter grade on the gradine scale.
- For Algebra II, the range for the middle 50 percent of school systems is about 5 $\mathrm{i}+$ oms (about 10 percentage points), or an entire letter grade.

Note:

Box and whisker plots illustrate not only the typical value such as a mean or median, but also the range in values. They are useful in evaluating the variation among groups, and for comparing the high and low values for different groups.

Data Source: Section V.

Observations:

- Since the initial administration in 1986, participation and average scores have increased, resulting in increases in yield and effective yield.
- Gains in effective yield have paralleled gains in yield, indicating that the additional students taking Algebra I are capable of performing at acceptable levels.

Notes:

Yield is an index of the effectiveness of a program which takes into account both participation and performance. It is calculated by multiplying the participation in a course by the average percent of core items answered correctly and then multiplying by 100 . Yield would be 100 if all students took a course and all students achieved a perfect score. Effective yield is a similar index but it counts as "participating" only those students whose achievement is above a cutoff point estimating whether they will pass the course.

Data Source: Tables 3, 8, and 11.

Observations:

- Since the initial administration in 1986, participation in Algebra I in Richmond County has increased dramatically.
- The increase in participation has been accompanied by an increase in performance, and a corresponding increase in yield and effective yield.
- These results suggest that school systems can increase participation in Algebra I, and increase performance at the same time.

Data Source: not in text.

Figures 22-26. Average Algebra I Core Scores and Participation for School Systems Grouped by 1989-90 8th Grade California Achievement Test Total Battery Scores.

Observations:

- The range in participation among school systems with similar average ability, as measured by the 8th grade California Achievement Test, is almost as great as the range among all school systems.
- Variation in participation cannot be explained totally by variations in the ability levels of students populations.

Notes:
School systems are arranged in alphabetical order within groups.
Data Source: not in text.

Figure 22
Average Algebra I Core Scores and Participation for School Systems Scoring at the 65th Percentile or Above on the 1989-90 8th Grade CAT

School Systems are arranged in alphabetical order
School System

Figure 23
Average Algebra I Core Scores and Participation for School Systems Scoring at the 60th-65th Percentile on the 1989-90 8th Grade CAT

Figure 24
Average Algebra 1 Core Scores and Participation for School Systems Scoring at the 55-59th Percentile on the 1989-90 8th Grade CAT

School Systema are arranged in alphabetical order

School System

60

State Averages indicated by arrows.

82

Figure 25
Algebra I Core Scores and Participation for School Systems Scoring at the 50-54 th Percentile on the 1989-90 8th Grade CAT

School Syatems are arranged in alphabetical order
School System

Figure 26
Average Algebra I Core Scores and Participation for School Systems Scoring Below the 50th Percentile on the 1989-90 8th Grade CAT

School Systema are arranged in alphabetical order
School System
Anson County Brunswick County Durham City Franklinton Clity Gates County Goldsboro City Greene County Hallfax County Hoke County Hyde County Kannapolls Cliy Kinston Clity Lexington Clity Madison County Montgomery County Northampton County

Pender County Robeson County Rocky Mount Clty Scotland County Thomasville Clity Vance County Warren County Weldon City West RockIngham City

State Averages indicated by arrows.

Section IV

Outstanding School Systems

6

Outstanding School Systems: 1989-90 Performance on End-of-Course Tests ${ }^{1}$

Rank	Algebra I	Rank	Binlogy
1.	Chapel Hill City (83.5\%)	1.	Chapel Hill City (98.1\%)
2.	Dare County (73.5%)	2.	Dare County (81.0\%)
3.	Tyrrell County (50.0\%)	3.	Hickory City (78.7\%)
4.	Watauga County (68.0\%)	4.	Roanoke Rapids City (51.1%)
5.	Currituck County (70.7\%)	T5.	Elkin City (102.7\%)
6.	Wake County (88.4\%)	T5.	Wake County (92.1\%)
T7.	Elkin City (84.3\%)	T5.	Hendersonville City (127.0\%)
T7.	Camden County (79.0\%)	8.	Watauga County (89.9\%)
9.	Catawba County (68.6\%)	9.	Pamlico County (86.9\%)
10.	Wilson County (67.3\%)	10.	Davie County (77.5\%)
11.	Cherokee County (58.7\%)	11.	Mount Airy City (103.7\%)
12.	Tarboro City (75.8%)	12.	Macon County (83.2\%)
T13.	Avery County (56.5%)	T13.	Burlington City (98.2%)
T13.	Ashe County (60.4\%)	T13.	Carteret County (92.5\%)
T13.	Thomasville City (68.6\%)		Mooresville City (113.2\%)
		T14.	Cabarrus County (83.4\%)
	14 school systems were within 1 raw score point of the 15th school system.		5 school systems were with 1 raw score point of the 15 th school system.
Rank	Geometry	Rank	Chemistry
1.	Dare County (46.2\%)	1.	Elkin City (50.8%)
2.	Chapel Hill City (86.6\%)	2.	Mooresville City (26.1\%)
3.	Mooresville City (54.9\%)	3.	Davie County (35.1\%)
4.	Tyrrell County (41.7\%)	4.	Roanoke Rapids City (45.6\%)
5.	Ashe County (39.9\%)	5.	Watauga County (28.9\%)
6.	Catawba County (39.7\%)	6.	Transylvania (30.9\%)
7.	Wake County (65.2\%)	7.	Wake County (58.9\%)
8.	Macon County (37.2\%)	8.	Perquimans County (31.2\%)
9.	Roanoke Rapids City (52.1\%)	9.	Rocky Mount City (26.9\%)
T10.	Currituck County (42.7\%)	$\Gamma 10$.	Mitchell County (18.7\%)
T10.	Albemarle City (74.3\%)	T10.	Union County (33.5\%)
12.	Hickory City (63.3\%)	T10.	Rutherford County (22.0\%)
13.	Yancey County (38.2\%)	T13.	Chapel Hill City (56.4\%)
T14.	Watauga County (55.5\%)	T13.	Wilson County (29.9%)
T14.	Hendersonville City (45.2\%)	T13.	Durham County (46.4\%)
	11 school systems were within 1 raw score point of the 15 th school system.		8 school systems were within 1 raw score point of the 15th school system

[^12]| Rank | Algebra II | Rank | Physics |
| :---: | :---: | :---: | :---: |
| 1. | Chapel Hill City (58.0\%) | 1. | Mooresville City (6.5\%) |
| 2. | Watauga County (36.7\%) | 2. | Chapel Hill Sity (46.0\%) |
| 3. | Dare County (61.3%) | 3. | Asheboro City (6.1\%) |
| 4. | Perquimans County (36.8\%) | 4. | Watauga County (10.3%) |
| 5. | Currituck County (35.3\%) | 5. | Chowan County (5.6\%) |
| 6. | Chatham County (40.0%) | T6. | Carteret County (7.2\%) |
| 7. | Carteret County (39.3\%) | T6. | Rutherford County (5.5\%) |
| 8. | Albemarle City (50.7\%) | 8. | Pasquotank County (3.5\%) |
| 9. | Wake County (65.2\%) | T9. | Clay County (11.8\%) |
| 10. | Greene County (34.4\%) | T9. | Davie County (6.2\%) |
| 11. | Chowan County (43.4\%) | 11. | Lerioir County (3.6\%) |
| 12. | Kinston City (34.4\%) | 12. | Mitchell County (7.4\%) |
| 13. | Rocky Mount City (25.6\%) | T13. | Albemarle City (13.2\%) |
| 14. | Pitt County (38.7\%) | T13. | Henderson County (5.8\%) |
| T15. | Gates County (37.0\%) | 15. | Kings Mountain City (3.6\%) |
| T15. | Clinton City (40.1\%) | | |
| | 6 school systems were within 1 raw score point of the 15th school system. | | 7 school systems were within 1 raw score point of the 15th school system. |
| Rank | U.S. History | Rank | English I |
| 1. | Wake County (84.9\%) | 1. | Elkin City (100.0%) |
| 2. | Montgomery County (74.4%) | 2. | Chapel Hill City (93.0\%) |
| 3. | Dare County (99.5\%) | 3. | Whiteville City (95.5\%) |
| 4. | New Hanover County (81.7\%) | 4. | Hickory City (87.3\%) |
| 5. | Hickory City (76.9\%) | 5. | Roanoke Rapids City (92.5\%) |
| 6. | Davie County (74.5\%) | 6. | Burlington City (97.4\%) |
| 7. | Elkin City (100.0%) | 7. | Hendersonville City (119.2\%) |
| T8. | Chapel Hill City (93.3\%) | 8. | Mooresville City (89.4\%) |
| T8. | Watauga County (78.7\%) | 9. | Wake County (93.0\%) |
| 10. | Macon County (81.1\%) | 10. | Perquimans County (86.8\%) |
| T11. | Union County (80.4%) | 11. | Cherokee County (85.2\%) |
| T11. | Burlington City (82.3\%) | 12. | Mount Airy City (88.4\%) |
| T11. | Cabarrus County (83.7\%) | T13. | Mitchell County (90.3\%) |
| 14. | Hendersonville City (110.7\%) | T13. | Currituck County (87.8\%) |
| T15. | Henderson County (71.8\%) | T13. | Cabarrus County (88.1\%) |
| T15. | Randolph County (72.2\%) | | |
| T15. | Currituck County (89.2\%) | | |
| | 22 school systems were within 1 raw score point of the 15 th school system. | | 8 school systems were within 1 raw score point of the 15th school system. |

[^13]Outatanding School Systems: 1889-90 Participation in Selective Courses ${ }^{1}$

[^14]Outetanding School Systoms: $1989-90$ Yield in Selective Cnurses ${ }^{1}$

[^15]Outetanding School Syateme: Gain in Porformance 1989 to 1980^{1}

Rank	Algebra I	Rank	Biology
1.	Avery County	1.	Pamlico County
2	Yancey County	2	Polk County
3.	Hyde County	3	Mooresville City
T4.	Anson County	4.	Jones County
T4.	Washington County	T5.	Paequotank County
T4.	Thomasville City	T5.	Cabarrus County
7.	Bertie County	7.	Swain County
8.	Hertford County	78.	Warren Ccunty
9.	Clay County	T8.	Washington City
10.	Swain County	10.	Thomasville City
T11.	Camden County	11.	Surry County
T11.	Albemarle City	12.	Kannapolis City
T11.	Hendermonville City	T13.	Transylvania County
T11.	Weldon City	T13.	Perquimans County
15.	Alamance County	15.	Hickory City
	10 echool aystemw were within 1 raw acore point of the 15 ch aybutem.		15 echool aynteme were within 1 naw acore point of the 15 ch gyitem.
Rank	Geometry	Rank	Chemistry
1.	Bladen County	1.	Perquimans County
2.	Dare County	2.	Franklinton City
3.	Macon County	3.	Thomasville City
4.	Franklinton City	4.	Yancey County
T5.	Ciay County	5.	Elkin City
75.	Elkin City	6.	Kannapolis City
T5.	Tyrrell County	7.	Edgecombe County
8.	Weldon City	8.	Jones County
9.	Edgecombe County	9.	Hendersonville City
10.	Cass. Ill County	10.	Hyde County
11.	Asheboro City	11.	Hoke County
T12.	Jackson County	12.	Henderson County
T:2.	Cabarrus County	T13.	Wilson County
T14.	Anson County	T13.	Tyrrell County
T14.	Polk County	15.	Kings Mountain City
T14.	Harnett County		
	25 echool aystema were within 1 raw score point of the 15 th syatem		18 echool aytuema were within 1 raw acore point of the 1 Sth eyntem.
Rank	Algebra II	Rank	U.S. History
1.	Lincoln County	1.	Richmond Courity
T2.	Hendersonville City	2	Warren County
T2.	Elkin City	3.	Franklinton City
4.	Martin County	4.	Hyde County
T5.	Newton City	T5.	Gates County
TS.	Surry County	T5.	Bertie County
7.	McDowell County	75.	Haywood County
8.	Perquimans County	8.	Scotland County
9.	Greene County	9.	Forsyth County
10.	Burlington City	T10.	Thomasville City
11.	Kannapolis City	T10.	Goldsboro City
12.	Kings Mountain City	T12.	Vance County
13.	Swain County	T12.	Whiteville City
14.	Albemarle City	14.	Graham County
T15.	Hyde County	15.	Caswell County
T15.	Kinston City		
	13 echool isntems were within 1 raw accre point of tire 16th gystem.		31 achool aynterna were within I raw acore point of the 15th symbem.

[^16]
Outstanding School Systems: Gain in Participation 1989 to 1990^{1}

Rank	Algebra I	Rank	Geometry
1.	Mitchell County	1.	Clay County
2.	Halifax County	2.	Jones County
3.	Weldon City	3.	Chatham County
4.	Tarboro City	4.	Kings Mcuntain City
5.	Edgecombe County	5.	Perquimans County
T6.	Durham City	6.	Mount Airy City
T6.	Pamlico County	7.	Camden County
8.	Lexington City	8.	Rowan County
9.	Chowan County	9.	Graham County
10.	Clinton City	10.	Swain County
11.	Jackson County	11.	Chapel Hill City
12.	Madison County	12.	Granville County
T13.	Newton City	13.	Mooresville City
T13.	Albemarle City	14.	Washington County
15.	Rutherford County	15.	Lincoln County
	8 school systems were withirı 3 percentage points of the 15 th school system.		6 school systems were with 3 percentage points of the 15 th schoo.. system.
Rank	Algebra II	Rank	Chemistry
1.	Cherokee County	1.	Whiteville City
2.	Alleghany County	2.	Gates County
3.	Polk County	3.	Roanoke Rapids City
4.	Elkin City	4.	Columbus County
5.	Swain County	5.	Goldsboro City
6.	Mount Airy City	6.	Clinton City
T7.	Macon County	7.	Albemarle City
T7.	Reidsville City	8.	Polk County
9.	Hickory City	9.	Elkin City
10.	Transylvania County	10.	Stanly County
11.	Currituck County	11.	Alleghany County
T12.	Goldsboro City	12.	Reidsville City
T12.	Pasquotank County	13.	Clay County
14.	Eden City	14.	Oaslow County
15.	Stanly County	15.	Orange County
	11 school systems were within 3 percentage points of the 15th school system.		13 school systems were within 3 percentage points of the 15th school system

[^17]
Outstanding School Systems: Gain in Yield 1989 to 1950^{1}

Rank	Algebra I	Rank	Gecmetry
1.	Mitchell County	1.	Clay County
2.	Tarboro City	2.	Jones County
3.	Albemarle City	3.	Chatham County
T4.	Pamlico County	4.	Kings Mountain City
T4.	Chowan County	5.	Chapel Hill City
T4.	Weldon City	6.	Mooresville City
7.	Newton City	7.	Jackson County
8.	Edgecombe County	8.	Rowan County
9.	Jackson County	9.	Mount Airy City
10.	Madison County	10.	Perquimans County
11.	Lexington City	11.	Bladen County
12.	Halifax County	12.	Granville County
13.	Rutherford County	13.	Asheboro City
14.	Iredell County	14.	New Hanover County
15.	Currituck County	15.	Camden County
	11 school systems were within 3 points of the 15th school system.		13 school systems were with 3 points of the 15th school system.
Rank	Algebra II	Rank	Chemistry
1.	Elkin City	1.	Elkin City
2.	Cherokee County	2.	Whiteville City
3.	Swain County	3.	Roanoke Rapids City
4.	Alleghany County	4.	Columbus County
5.	Mount Airy City	5.	Albemarle City
6.	Transylvania County	6.	Alleghany County
7.	Eden City	7.	Gates County
T8.	Macon County	8.	Goldsboro City
T8.	Currituck County	9.	Stanly County
10.	Dare County	10.	Clinton City
T11.	Hickory City	11.	Onslow County
T11..	Lincoln County	12.	Edgecombe County
T11.	Goldsboro City	13.	Sampson County
14.	Stanly County	14.	Beaufort County
15.	Surry County	15.	Hyde County
	14 school systems were within 3 points of the 15th school system.		23 school systems were within 3 points of the 15th school system

Rank	Algebra I	Rank	Geometry
1.	Albemarle City	1.	Clay County
2.	Mitchell County	2.	Jones County
3.	Tarboro City	3.	Chatham County
4.	Chowan County	4.	Kings Mountain City
T5.	Washington County	5.	Bladen County
T5.	Pamlico County	6.	Mooresville City
7.	Yancey County	7.	Perquimans County
8	Newton City	8.	Burlington City
9.	Goldsboro City	9.	Chapel Hill City
10.	Weldon City	10.	Granville County
11.	Madison County	11.	Jackson County
12.	Iredell County	12.	Asheboro City
13.	Rutherford County	13.	Rowan County
14.	Edgecombe County	14.	New Hanover County
15.	Jackson County	15.	Guilford County
	10 school systems were within 3 points of the 15th school system.		16 school systems were with 3 points of the 15th school system.
Rank	Algebra II	Rank	Chemistry
1.	Elkin City	1	Elkin City
2.	Cherokee County	2	Whiteville City
3.	Mount Airy City	3	Roanoke Rapids City
4.	Albemarle City	4	Albemarle City
5.	Swain County	5	Columbus County
6.	Hendersonville City	6	Alleghany County
T7.	Currituck County	7	Edgecombe County
T7.	Transylvania County	8	Stanly County
9.	Dare County	9	Goldsboro City
10.	Macon County	10	Clinton City
11.	Lincoln County	11	Sampson Junty
12.	Eden City	T12	Hyde County
13.	Surry County	T12	Gates County
14.	Alleghany County	14	Beaufort County
15.	Hickory City	15	Onslow County
	17 school systems were within 3 points of the 15th school system.		21 school systems were within 3 points of the 15th school system

Section V

Results for Public School Systems

Average Pertormance on 1989-90 End-ot-Course Tests by School System

NOATHEAST REGION School SyalemAlgebre hious	Gieomerry......	Algabre If....		\ldots	Chemitetry...ter	Phyelce......	 Englith 1......		co..u.3. Hisloryonom	
	Aversege Core	Parcam Correct	Averuge Core	Porcent Corroct	Average Core	Percant Correct	Avarage Coro	Parcemt Correct	Average Core	Percent Correct	Average Core	Percem Correct	Average Core	Percent Correl	Averege Core	Correct
Tymell county	47.6	:79.3	44.0	74.1	37.5	88.9	34,	51.\$	31.3	04.2	28.	40	85	65		
Weshington County	37.1	61.9	32.8	54.7	34.5	61.6	36.5	55.3	34.9	58.1	42.3	70.4	64.4	64.4	38.9	64.8
	35. ${ }^{3}$	39,	35;	59,1	34.8	62.1	40.8	41.5	35.0	58:4	37.2	81.	0.4	80.4	39	8

End-ot-course testa vary in length: Algebra I, Geometry, Chemistry, Physics, and U.S. History contain 60 items; Algebra II contains 56 items; Biology, 66 items; and English I, 100 itams.

Average Performance on 1989－90 End－ot－Course Teste by School System

SOUTHEAST REGION Sohool Syatem	－n．uAlgebre ha．．．		．．．．．．Geometry．．．．．．		．．．．．．Algebra lh．．．．．		．n．．etiology		．．．．．．Chembatry．．．．．．				－romenglith lomou		coulu．S．Hietorymuon	
	Avorsge Cure	Percent Correct	Average Core	Purcent Correct	Average Core	Percam Correct	Avarige Core	Percern Correct	Average Come	Percent Correct	Average Cort	Percem Corract	Average Core	Parcent Cormel	Average Core	Purcem Correct
Cortorm County	42.7	71.2	40.2	66.9	42.0	74.	43.9	66.4	． 9	88.4	44.2	73.7		62.4		72.3
Cruntominy	41	\％ 4			34：2	88.8	63，3		40\％		4 4.4×8.7		34．	6．${ }^{\text {a }}$	43.0	12
Duplln County	39.3	65.5	35.4	59.1	35.3	63.1	39.1	59.3	36.9	64	38.0	3	64	34.3	$\because \%$	69.6
Orienioloundy	： 40.4	87.4	40，3	67.2	41.7	74.5	40.2	60．	41.2	68.7	87．	B31	67，	．	\％0．	7.
Jones County	37.3	62.1	35.3	58.8	34.6	61.9	40.9	62.0	34.9	58.2	36.4	0.7	56.7	6.7	0.2	67.0
Unstr Conny	40.2	67.0	37.6	82.6	33.9	60.6	3事	61．	19．5	65．6）	13.3	72．4	82.3	．	4645	\％ 87.
Kindor＂：	42.7	71.1	37.8	63.0	41.5	74.1	38.6	58.5	38.6	64.4	37.9	83.1	00.4	60.4	39.8	6.4
	\％ 7.5	82． 1	33.3	65.5	38.1	69．9	40.4	戠	39.0	88.0	\＄${ }^{\text {B }}$	\＆ 3.7	\％ 6		4 4,0	\％te．
Onmlow County	2.0	69.9	36.6	61.0	33.6	60.1	40.1	60.7	39.1	65.2	36.7	61.1	64.3	04.3	41	14.0
Pramlog County		70．2	$\because: 40.7$	87.2	39.1	69．	44.7	6\％，7	35，	3）\％	33.0	55.0	B2．	\％${ }^{2}$ ． 1	13	
Pender County	36.5	60	35.4	58.9	34.4	61.4	7.5	58.8	36	61.1	33.9	56.6	63.4	63.4	41.0	68.4
smmpeen County	37．3	82.2	34.3	$\therefore 3.5$	33.7	80.1	89．	$\therefore 0.8$	18．4	60.7	42．2	70.4	＊	$61.0 \div 13.2 \cdots 120$		
Cllaton Chy	35.5	59.1	35.1	56.5	41.0	73.1	34.0	52.7	36.1	60.2	30.9	51.5	60.9	60.9	42.4	70.7
Wrym Coindy	3 360	63.4	38.7	81．2	38.0	62.6	40.8	61.3	38.2	8鬼．7	38.7	84：	$\therefore 89.2$	63．2		70.3
Gotdeboro Clity	37.5	62.5	33.8	56.3	33.0	58.9	36.9	56.0	32.1	53.5	37.2	62.1	58.1	58.1	39.5	65.6

End－ol－course lests vary in length：Algebra I．Geometry．Chemistry．Physics，and U．S．History contain 60 items；Agebra II contains 56 items：Brotogy， 66 items；and English I． 100 Items．

Average Performance on 1989-90 End-of-Course Tesis by School System

CENTRAL REGION			-.....Geometry		-...-Algante It.....	-Blologya.c.Chembery......		.an. Phyalco......	0Enghth loum			
	Average	Parcert Comect	Avarage	Purcent Correct	Average	Percent Correat	Avarage	Peroent Correct	Average	Percent Corract	Average Core	Percont Correct	Avarege Core	Percent Correct	Average Core	Percent Correct
School Syatem																
D																
Tarboro Chy	43.7	72.8	36.0	59.9	36.1	64.5	39.1	59.3	35.5	59.1	36.9	81.5	67.1	67.1	39.4	85.6
Franklinton Chy	34.5	57.5	41.4	68.9	30.0	53.6	38.3	58.1	41.	69.2	40.3	87.2	59.3	59.3	40.8	63.0
	3	8313	3 B.		3	8	57.3	5	17.3	©2.1	31	33.8	82.3	62.3	C1/4	1-9:
Nesh County	40.7	67.8	39.6	66.1	38.5	68.8	38.6	58.5	38.7	64.5	42.8	71.4	62.6	62.6	42.4	70.6
Northampton County	38.4	63.9	30.1	50.2	29.6	52.9	36.5	55.3	32.8	54.6	34.1	56.8	56.3	56.3	30.4	64.0
Vancu County	$3{ }^{3} .6$	84.4	34.0	58.8	35.7	00.2	\$5, \%	53.9	4.9	\$4.1	\% 8.0	63.3	58.3	58.8	$\$ 1.0$	1).
Wake County	46.4	77.3	43.6	72.6	41.8	74.7	45.2	68.5	42.9	71.4	42.0	70.0	70.6	70.6	46.7	77.8
Wermin Coundy \quad	37.2	\% 2.1	\$9,6	55.1	30.0	53.8	39.5	59.5	34.7	\$7.	\cdots	*	5\%.	50.0	41.0	8\%.9
Wilson County	44.3	73.8	39.8	66.3	39.1	69.8	40.7	61.7	42.2	70.3	41.7	69.5	63.6	63.6	42.6	71.1

End-ol course tesis vary in length: Algebra I. Geometry, Chemistry, Physics, and U.S. History contain 60 tems; Algebra II contains 56 items; Biology, 66 items; and English I, 100 items -. Only 1 student took the Physics Test in Warren County.

Averege Partormanes on press-s0 End-ol-Couras Tasis by School Syslam

Average Performance on 1989-90 End-ot-Course Tests by School Syatem

NORTH CENTRAL REGION no...-Algebra ho.o.c		Geormetry.a...			-3Blology				-o.n.Ptrydas....		-..n-Englith lowo.0			
Nomin	Average	Percemp	Avarage	Porcert	Averege	Percam	Avorage	Percent Correct	Average	Percent Correct	Average Cors	Percert Correct	Avorage Core	Porcem Correct	Averige Core	Perconk Commot
SchoolSyetam	Sore	Correct	Core	Correct												
Ashehopo Clty Hockinghmmedunty	42.0	70.0	39.5	65.9	37.3	68.6	43.7	6\%.2	39.4	65.7	45.1	75.2	68.5	68.5	43.4	72.3
	39.5	65.8	38.6	84.3	77.5	67.0	43.0	05,0	38.0	63.3	41.3	68.	62.8	62.6	1t.8	69.1
Edon Cliy	40.2	67.0	39.6	65.9	40.8	72.8	39.4	59.8	35.4	58.9	34.9	58.2	63.9	63.8	39.4)	86.6
Wont, Ruckilyihmin ...	39.7	66.2	4.4 .7	81.1	38.3	65.8	41.4	\%t. 6	35.7	\$9.5	34.6	\$8.0	68.8	$5 \% .8$	0	70.8
Reldeville Cliy	36.3	63.9	37.1	61.8	33.7	60.2	37.6	56.9	34.2	56.9	35.8	59.7	65.4	65.4	39.8	66.4
	30.6	64.4	37:3	62.5	35.5	83,6	34.5	56.0	36.6	et,0	3 7.2	- ${ }^{\text {b }}$	b1:5	E1. 8	40.1	\% 5 ,

Average Performance on 1989-90 End-ot-Course Tests by School System

End ol.course tests vary in lengit: Algebra I. Geometry. Chemistry. Physics. and U.S Hislory contain 60 items: Algebra il contains 56 items: Hology. 66 items; and Engish I. 100 ilems

Average Pertormance on 1989-90 End-of-Course Tests by School Syslem

NORTHWEST REGKON	...aneAlgebra humes		-.u.abernatry......	Algebra ltu....		.nembiology		...unChombaty	Physloen.....				.-.U.U.S. Hetoryom	
	Average	Parcert Correct	Average Cono	Percent Coprect	Average Cora	Purcem Correct	Avernge Core	Percent Correct	Avarage Corm	Percent Correct	Average Core	Parcent Correct	Average Core	Correct	Core	Correct
School Syetem																
		72.7	35.7	59.5	33.2	59.2	37.0	58.1	38.1	63.5	37.1	61.0	65.5	65.5	41.5	69.2
ctuming cotily	$\Delta \mathbb{B}$	14%	03	73.1	3等,	8日,	40.6	U1.7:	$1{ }^{1}$	\% 3.3	318.2	\$3.7	88.8	¢S.	\% 4	14.
				0.	39.1	69.9	46.3	70.2	41.0	68.3	39.1	65.1	72.9	72.9	45.9	76.5
					37.5	67.	44.5	67.4	44.4	74.0	43.4	72.3	06.2	66.2	45.7	78.1
$\begin{array}{llllllllllllll}\text { Surry County } & 41.9 & 69.0 & 39.5 & 65.8 & 39.8 & 71.0 & 42.5 & 64.4 & 37.5 & 02.5 & \end{array}$																
Entin chy	4*,	74.9	. 37.5	65.9	40.9	73.1	45×2	01.5	44.b	74.6	42.7	71.1	75.5	75.3	45.2	75.1
	40.9	68.2	40.6	67.6	39.1	69.8	44.4	67.2	40.6	67.7	38.4	64.1	69.3	69.3	42.5	70.9
Mount Alry Chy	40.9															
Whinugh Cowny	48.1	$\cdots 780$	\cdots A 0	70,0	44.7	74:	44.4	88.0	43.1	72.3	$\cdots 44.6$	74.4	\% ${ }^{3}$	68,5	44, ${ }^{1}$	74×3
						57.0	39.9	60.5	38.9	64.0	35.4	59.1	61.4	61.4	43.0	71.7
WIIkes County Yadkincounity	38.4	64.1	33.8	56.	32	57.0	39.9	60.5								
		60	38.4	64.1	35.9	64.2	$\because 34.0$	00.5	34.9	58.2	44.0	58.7	63.3	63.1	43.2	72.0

End-ol course tests vary in length. Algebra I, Geometry. Chemistry, Physics, and U S History contain 60 items; Algebra If contains 56 items; Biology, 66 items; and English I, 100 items.

Average Performance on 1989-90 End-of-Course Teste by School Syatem

End-ol-course tests vary In length: Algebral, Geometry, Chemistry. Physica, and U.S. History contain 60 items; Algubra Il contains 56 items; Biology, 66 ltems; and English i , 100 items.

	SOUTHEAST REGION School Syatom	Number Tested	Algabral Purcent Alh Giade 1980－80	$\begin{array}{r} \text { Porcont } \\ \text { oin Grede } \\ 1089.00 \end{array}$	Number Tosled	Geomelry Percent 8ih Grade 1987.88	$\begin{array}{r} \text { Percent } \\ \text { 19月 Grade } \\ 1980.80 \end{array}$	Number Toeled	Algebrall Percent Ath Grada 1046－87	$\begin{array}{r} \text { Parcent } \\ 11 \text { h Grade } \\ 1880-\infty 0 \end{array}$	Number Tosled	US Hilaiory Percenl sth Girion 1880－87	$\begin{array}{r} \text { Percont } \\ 11 \text { ih Grace } \\ 1009.00 \end{array}$
	Brunsumalk Courly	321	00．2\％	72．6\％	13：	48．3\％	81．4\％	208	20．1\％	38．4\％	817	71．1＊	91．0\％
	Cartaret Counly	442	74．3\％	72 \％\％	318	55．7\％	62．0\％	236	39．3\％	50．0\％	416	74．3\％	94．5\％
	cravan Counay	470	18．1＊	80．7\％	318	51．8\％	55．2\％	420	12．3\％	81．5\％	001	80．6\％	04．0\％
	Duplin County	333	60．0\％	62．7\％	284	40．2\％	50．7\％	238	37．3\％	43．4\％	509	79．8\％	92．0\％
	Grumit Coumty	125	47．9\％	451%	95	49．8\％	40．2\％	78	34．4\％	4．3\％	172	75．0\％	100．0\％
	Jonem Counly	93	68．8\％	85．5\％	70	68．8\％	07．3\％	28	23．0\％	29．5\％	80	65．8\％	4．2\％
	Lirnir County	sth	\＄5．8＊	85．0\％	257	80．7\％	4．4\％	2 ta	43．4\％	65．4\％	428	54．8\％	7．3\％
	Kinston Clity	284	73．3\％	67．5\％	179	48．2\％	54．7\％	139	34．4\％	41．6\％	225	80．4\％	07．3\％
	Now Hanewir County	1204	80．7\％	74．6\％	1020	70．0\％	74．5\％	The	46．1\％	晃． $4 \times$	1260	11．7\％	0．0．0\％：
	Onalow Counly	946	11．5\％	71．8\％	653	55．2\％	60．0\％	689	46．4\％	53．8\％	1030	84．1\％	97．4X
	fammos County	111	78．2\％	＊7．3\％	7	61．0\％	68．4\％	41	30．4\％	4．5\％	128	76．3\％	4．74
	Pender Counly	240	67．0\％	60．6\％	170	50．7\％	49．1\％	142	34．1\％	39．3\％	347	83．4\％	96．1\％
	－mmpren Coundy	\＄4	25．1\％	\＄7．2\％	252	47．0\％	81.0%	100	10．0\％	40．1\％	419	＊1．4\％	47．6x
	Clinton Chy	131	67．2\％	60．4\％	103	45．2\％	61．0\％	35	40．1\％	41．6\％	172	61．1\％	90．3\％
	vaype Cowny	774	7204	\％a．7＊	844	8．${ }^{\text {a }}$ \％	81．0\％	476	40．2\％	81．0\％	112	67．0\％	\％7．0\％
	Coldeboro CHy	232	70．1\％	67．1\％	132	43．0\％	40．0\％	164	46．7\％	80．0\％	258	73．5\％	89．6\％
ช	Schoor Syotem	Number Teater	Biology percont oin arede 1007－40	$\begin{array}{r} \text { Pucoent } \\ 10 \text { in Grade } \\ 1009.00 \end{array}$	Pumber Tomed	Chambetry Percert sih Giade 1000－87	$\begin{aligned} & \text { Purcernt } \\ & 11 \mathrm{~h} \text { Grado } \\ & 1009.00 \end{aligned}$	Number Teated	Phyake Percent ath Grade 1005－80	$\begin{array}{r} \text { Peoreent } \\ 121 \mathrm{~h} \text { Grode } \\ 1009-00 \end{array}$	Number Teeled	Englioh 1 porceme sth Grade 1046－80	$\begin{aligned} & \text { Percent } \\ & \text { en arecte } \\ & \text { 108e-co } \end{aligned}$
		02	05．1\％	サ1．4\％	244	33．0\％	4．9\％	73	11．0\％	14．5\％	367	77．7\％	71．0\％
	Caramet County	328	02．5\％	102．0\％	248	41．0\％	52．1\％	45	7．2\％	10．3\％	505	24．8\％	62．5\％
	Cruwen Coundy	763	72．3\％	0．5\％	\＄13	31．0\％	38．6\％	116	11．0\％	15．1\％	003	81．0\％	18．0\％
	Dupiln County	524	69．0\％	93．6\％	237	37．1\％	43．2\％	50	7．0\％	0．5\％	496	80．3\％	81．2\％
	green Count	140	75．8\％	\％2．5\％	80	26．8\％	24．0\％	20	8．4\％	120\％	237	11．8\％	0．6\％
	Jonee Counly	11	89．2\％	87．5\％	37	30．3\％	36．9\％	10	7．5\％	11．4x	122	07．ex	85．0\％
	Jones Counly	46	02．3x	90．2\％	213	30．0\％	4．7\％	16	9．6\％	4．7\％	470	80．3\％	日．0．4
		298	80．6\％	91．4\％	118	29．2\％	35．3\％	43	11．1\％	15．9\％	299	83．8\％	78．5\％
	Kinston Chy	2063	147．4\％	150．5\％	824	53．5x	04．0\％	279	17．3\％	23．7\％	1550	4．7\％	04．0\％
	Now Hunover County	1130	80．6\％	103．0\％	518	42．1\％	48．8\％	140	11．3\％	13．0\％	1132	97．5\％	80．0\％
	Onalow Counly	1130 134	00．0\％	05．0\％	45	21．0\％	21．7\％	18	9．5\％	12．0\％	147	103．5\％	81．1\％
	Pmmice county	133	103．8\％	100．3\％	133	32．0\％	36．0\％	47	11．2\％	14．8\％	312	88．1\％	78．8\％
	Ponder County	347	103．0\％	4．8\％	162	34．2\％	s7．0\％	16	3．4\％	4．2\％	109	0．7\％	2．2\％
	Sumpaon Courly	467		N．8\％	70	37．3\％	45．1\％	9	4．5\％	8．0\％	177	00．8\％	81．6\％
	Clintor Cliy	194	1＊	\＄0．0\％		1．0\％	88．3\％	128	12．3\％	15．1\％	1010	05．7\％	9． 24
	Waym Coumy	$2{ }^{2}$	02．7\％	\＄5．0\％	529	47．0x		13	3．2\％	4．2\％	277	03．7\％	80．14
	Ooldaboro CHy	289	87．0\％	95．4\％	187	47．6x	58．0\％	13	3．2\％	4．2\％	27		

NOATH CENTAAL REGON School Syatem	Number Tenlod	Algebral Percent Din Grade 1890－80	$\begin{aligned} & \text { Pescent } \\ & \text { on Gracte } \\ & 1800-\infty 0 \end{aligned}$	Number Thenod	Geompiry Percent oth ainde 1007－48	$\begin{aligned} & \text { Porount } \\ & \text { 10in Grado } \\ & \text { isesoco } \end{aligned}$	Number Tested	Atgebrall Porcent ath arnds 18ec－47	$\begin{aligned} & \text { Porcont } \\ & 11 \text { in } \mathrm{Gradode} \\ & 1000-00 \end{aligned}$	Numbel Tenied	US Hielory Percent in Grede 1006－87	$\begin{aligned} & \text { Pwoent } \\ & 11 \text { h Crede } \\ & \text { isee.es } \end{aligned}$
Alumana Cawny	341	72．48	84．14	405	60．2\％	64．5\％	315	40．2\％	47．3\％	477	6．4\％	101．7\％
Burlington Cthy	401	20．0\％	74．8\％	304	60．5\％	73．1\％	232	44．7\％	53．2\％	427	62．3\％	81．0\％
Cummel cointy	200	筀．14	：	119	40．2\％	41．5\％	115	11．7\％	47．1\％	－ 205	70.27	1．4．
Chathem County	385	93．4\％	85．3\％	285	66．9\％	69．2\％	180	40．0\％	49．2\％	309	62．0\％	100．0\％
Ouvidion Cowny	4	72．0\％	＊ $2 \times$	131	87．0．t	\＄1．9＊＊	\％	11．19\％	11．0\％	11040	\％	胜酸
Lexington Clity	200	92．7\％	94．7\％	130	50．0\％	64．0\％	75	27．5\％	34．\％\％	184	60．4\％	95．3\％
Themer mintio CH_{5}	10\％	44\％	14＊	0	43，2\％	4．1．4\％	4	35．2\％	414\％	147	\therefore \％．0x	\％
Foroyth rounty	2100	71．0\％	70．0\％	1484	54．6\％	53．0\％	1433	52．6\％	84．5\％	458 $\times \quad 149$	18．0\％	18．1\％
Culthid Counny	144	T14．4x	\％ 712%	1220	14．80\％	70．4＊	\％ 4	47，7\％	Hen\％	\％112	\％ 0 \％	\％，m
Oreenmbere Chy	1188	1．0\％	78．5\％	1000	64.3%	67．1\％	747	50．5\％	81．0\％	1143	72．4\％	84．0\％
Herthetin chy	448	76．5\％	W：719\％	24	41.0	$\therefore 81.10$	374	481\％	粊安	\％ 41	\％tid $\%$	11．0\％
Orenge County	270	70．7\％	65．2\％	247	88．2\％	74．7x	185	44．4\％	62．1\％	303	72．7\％	101.7%
Enderir mey y	310	04．6\％	68．1\％	311	M．10\％	77．7\％	248	11．0\％	611\％	，		1048
Pereon County	310	72．1\％	74．0\％	227	85．6\％	57．0\％	148	34．3\％	42．0\％	328	77．4\％	05．1\％
Mandiph deuny as	先	0484	41.8	4214	40．1\％	414\％	241	27．4\％	57．6\％	747	\％ 7 \％${ }^{\text {a }}$	14\％
Atheboro Chy	18	60．0\％	60．2\％	174	4．0\％	78．1\％	135	47．0\％	80．7\％	\％ 205	71．4\％	6．1\％
Weoldincimam doualy	10	\％ 1.48	\％ 4.7%	141	4．4．4	\therefore \＄1．1\％	1	51．0\％	4．t＊	\％ 197	． 71.0%	n．1s\％
Edon Chy	238	74．3x	81．9\％	152	47．1\％	18．0\％	132	44．1\％	48．1\％	280	87．0\％	N．7\％
Wiot Hechangoin \because	2917	mothe	Sp tith	131	4．4\％	4．7\％	104	12．1\％	4．1\％	24	\％ 70.18	\％
Aoddorme Chy	177	4．4\％	$\begin{aligned} & \text { 82.3x } \\ & \text { en } \end{aligned}$	104	$\begin{aligned} & 34.7 \% \\ & 43.7 \% \end{aligned}$	$\begin{aligned} & 40.9 x \\ & 80.0 \% \end{aligned}$	$\begin{aligned} & 131 \\ & 101 \end{aligned}$	$\begin{aligned} & \text { 42.0\% } \\ & 35.1 \% \end{aligned}$	$\begin{aligned} & 85.5 \% \\ & 42.4 \% \end{aligned}$	$\begin{array}{r} 214 \\ \because \quad 41 \end{array}$	$\begin{aligned} & 68.9 \% \\ & 7 t+3 \% \end{aligned}$	$0.7 x$
Bohool Bymm	Menber			Number Thend	Chentrity Parcent ah Gredt 104－87	Purcent 11 lin Grade 1806． 10	$\begin{gathered} \text { Number } \\ \text { Teetred } \end{gathered}$	Ptyale Purcent thande 1845－4	Poroment 12th Grade 180． 0	Mumber Temed	Englinth Pureent Oh Orade 184－89	Pweent Wh Crmo 1000－0
A	71	7r．0\％	\％107 Ox 1	321	70．9\％	4nax	m	10．5\％	12．3\％	71	\＄7．1\％	47．27
Duringeton City	436	4．2\％	104．0\％	237	45．7x	64．4\％	132	22．1\％	24．1\％	418	87．4x	81．0\％
Cominim diomity	4	H04	\％ 3 \％	\＄12	158\％	8184\％	31	10．1\％	14．5\％	6s	4．2\％	\＄0．7\％
Chathem County	372	93．0\％	67．1\％	147	32．7\％	40．2\％	32	6．6\％	8．8\％	376	8．2\％	67．9\％
	$\therefore 104{ }^{\text {d }}$	\because 迷明	20．0\％	0	471\％	8．1\％	24	1．1．15	22．4\％	¢ 1111	7．1\％	7．14
Lexington Cly	205	6．1\％	101．0\％	78	28．3\％	39．4\％	48	17．2\％	25．1\％	\％ 188	85．7\％	65．4\％
Trantrimis any	10	01．1\％	50．0\％	隠	2n．4\％	288\％	18	7．\％	10．6\％	\％ 144	＊1．4x	A1．0x
Forsyth County	2474	90．8\％	24．0\％	1078	38．5\％	42．4\％	438	14．3\％	17．0\％	2580	65．7\％	65．0x
Outherit Cowity	1004	\＄0．2\％	2．t\％	40	4．14	87．0\％	224	11．5\％	13．6\％	T127	2．18	1．7\％
Oremreboro CHy	1308	4．0\％	67．7\％	760	40．5\％	58．4\％	288	18．4\％	22．7\％	1276	64．6\％	63．0\％
Hlath Pume Chy	$4{ }^{4}$	74．2x	87．0\％	17	30，0\％	40．1\％	40	0，0\％	4．1\％	607	H．4\％	11．9\％
Orange County	302	72．4\％	98．2\％	171	42．7\％	50．7\％	37	0．1\％	12．4\％	323	64．6\％	76．0\％
chupat mim chy	352	08．1\％	87．18	235	08．4\％	6．3．2\％	173	4．0\％	47．3\％	401	3．0\％	2．0\％
Person County	347	65．0\％	24．5\％	0	22．6\％	27．7\％	12	16．4x	23．4\％	341	4．6\％	60．9\％
Ampdotpic Ociuly	743	74．7\％	6．8\％	309	31．84	518．4\％	61	1．0\％	1．5\％	173	4．7\％	7．9\％
Ashabero Chy	244	83．8\％	110．9\％	131	45．6\％	57．0\％	17	6.1%	E．Ex	220	09．1\％	64．7\％
Rochinghan Courly	254	4．3\％	\％9．0x	114	44．8\％	810\％	18	8.0%	7.6%	248	2． 2.18	H．t\％
Fiden Chy	290	62．3\％	98．1\％	161	53．0\％	58．9\％	83	28．6\％	37．1\％	277	64．0\％	95．7\％
Went，\％oellingtem	274	17．0\％	5．5\％	113	38.0	414\％	30	6．1\％	12．4\％	$\because 272$	11．1\％	14．0\％
Roldavile Chy	230	81．3\％	90．8\％	110	35．9\％	46．6\％	17	4．9\％	7．3\％	288	67．5\％	\％．4\％
\＄（\％my Cxinky	40	67．0\％	107．0\％	180	30.4	14．0\％	18	3，5\％	4．5\％	＋0．	0．0＊	\％ror

Particlpation in Next Course in Math and Science Sequence by School System

Percent ADM taking Algebra 1 (or Btology) is the estimated percentage of studenis in an elghth-grade class who will take Algebra I (or Biology). Other percentapes represent the entimated percentage of students in one course tuking the next course in the sequence. All calculations are based on the assumption that studenis take courses In the following sequence: Algebra I, Geometry, Algebra II; or Biology, Chemistry, Physics.

Participation in Next Course in Math and Science Sequence by School System

Percent ADM taking Algebra 1 (or Blology) is the eatimated percentage of students in an eghth-grade class who will take Algebra I (or Biology). Other percentages represent the estmated percentage of atudents in one course taking the next course in the sequence. All ealculations are based on the assumpton that qudents take courses in the following sequence: Algebra I, Geometry, Algebra II; or Biology, Chemistry, Physte.

Participation in Next Course In Math and Sclence Sequence by School System

Percent ADM taking Algebra I (or Hiology) is the estimated percentage of students in an eighth-grade class who will calculations are based on the
percentages represent the estimated percentage of students in one course taking the next course in ine ingenc. Chemstry, Physics.

Participation in Next Course in Math and Science Sequence by Sct,ool System

Percent ADM taking Algebra I (or Blology) is the estimated percentage of studenta in an eighth-grade clasa who will take Algebra I (or Blology). Other
percentages represent the cstlmated percentage of students in one course taking the next course in the sequence. All calculations are besed on the
assumption that students teke courses in the following sequence: Algebra I, Geometry, Algebra II; or Blology, Chemistry, Phydes.

Paricipation in Next Course in Math and Science Sequence by School System

	NORTH CENT School System	$\begin{array}{r} \text { REGION } \\ \text { Elghth } \\ \text { Grade ADM } \\ 1986-37 \end{array}$	N Tested Algebra I 1987-88	Percent ADM Taking Algebral	N Tested Geometry 1988-89	Percent Algebra I Taking Geometry	N Tested Algebra II 1983.90	Percent Geometry Taking Algebra II	Elghth Grade ADM 1985-56	N Tested Blology 1987.88	Percent ADM Taking Biology	N Tested Chemistry 1988-89	Percent Blology Taking Chemlstry	N Tested Phystes 1989.90	Percent Chemistry Taking Phyales
$\stackrel{\infty}{\bullet}$															
				73.4\%	305	80.1\%	232	76.1\%	597	532	89.1\%	263	49.4\%	132	50.2\%
	Burilington Clity				$1 i$	$4,1 \%$	$1 \mathbf{1 v}$	13.8	$\frac{10 y}{}$	$2 \mathbb{1}$	2.ilw	$1 \mathbf{1 1}$	\#ur	$\mathbf{4}$	$\mathbf{2 N : 2}$
	cowtecouy	\&\%\% $43 ?$	\% 25						483	370	76.6\%	153	41.4\%	32	20.9\%
	Chatham County	450	290	65.8\%	190	64.2\%	180	94.7							
	Dut. .m comik		\$03	70.6	113.	71.4\%	64	$\$ 1.3 \%$	13 m	11\%\%	u*s:	4\%	8.11\%	220	34.24
		269	161	59.9\%	120	74.5\%	75	62.5\%	279	235	84.2\%	74	31.5\%	48	6
					101	i, 3 \%		$\omega, \Delta *$	111	10\%	- 5 \%	0	2n*	15	, 227\%
									3070	2873	93.6\%	1134	39.5\%	439	38.7\%
	Forsyth County								307			48	sa.8\%:	214	Masu:
	midintiomis	1884	$1 \mathbf{4 6}$	68.4.	1003	74.3	\% ${ }^{13}$								
	Greensboro	1579	1422	90.1\%	1056	74.3\%	797	75.5\%	1757	1436	81.7\%	809	56.3\%	208	
		§		\$3,4\%	20)	4.04	2	. 6 6, \%	(0)	S0\%	44s\%	103	mats	40	2in\%
							185	77.7\%	405	304	75.1\%	130	42.8\%	1	28.5\%
	Orange County	417	316									\% ${ }^{2}$			ctes:
	chaminuch		\% 8 46:	2306\%	300	4.7\%	\% \% \% 20	20.	\% \% $\times 37$	0	87.3\%	29	14\%		
		425	318	74.8\%	195	61.3\%	148	75.9\%	499	432	66.6\%	122	28.2		
			613	89.7	32	ous	211	72.9%	1112	9	His\%	$\stackrel{\square}{\text { a }}$, am	3n, 4.	\bigcirc	223\%
						11	135	81.8	280	234	83.6\%	112	47.9\%	17	15.2\%
	Asheboro City		202											\% ${ }^{13}$	130\%
	Rocldriphum Comit	$\therefore 236$	-259	101.2\%	\%	46.7\%	\% \bigcirc	\% 79.3%							
	Eden Clity	299	232	77.6\%	167	72.0\%	132	79.0\%	325	262	80.6\%	6150	57.3\%		
	Weat Rockimpam			\% 69.9\%	$\cdots .142$	64.3\%	$\therefore 104$	人73.2\%	‥ 331	$\cdots 275$	4.14	$\square 12$	\%4d.4	\cdots	13\%
			209			65.6\%	13	95,6	345	28	82.3\%	\%	29.6\%		20.2\%
	Reldsville Clity								\cdots			\cdots	-		10.3\%
	Swker Cownty	559	298	\% 52.80	22	. 75.98	.								

Swkes County

[^18]Participation .n Next Course in Math and Science Sequence by School System

Percent ADM taking Alpebra 1 (or Blology) is the estimated percentage of atudents in an elghth-grade claso who wall take Algebra I (or Blology). Other percentages represent the estimated percentage of students in one course taxing the next course in the sequence. All calculations are based on the issumption that students take course in the following sequence: Aleebra 1, Geometry, Algebrs ili; or Blology, Chemistry, Physcr.

Partlcipation In Next Course In Math and Sclence Erequence by Schoc' System

	NORTHWEST REG School Sytem		N Tesced Algebral 1 1987-88	Percent ADM Taking Algebra 1	N Tested Geometry 1988-89	Percent Algebra 1 Taking Geometry	N Tested Algebre 11 1989-90	Percent Geometry Taking Alectrall	Elphth Grade ADM 1985-86	N Tinted Blology 1987-88	Percent ADM Taking Biolony	N Tested Chemistry 1988-89	Percent Blology Taking Chemistry	N Tested Physics 1989-90	Percent Chemstry Taking Phyaics
8															
	Alleghany County		\%. 112	86.28.							\#et.	7	Hitu		\%134.
	Ahimoun)/\%/2	\%. $/$.	, \% 12 n \%	627\%						.	824\%	54	28.9\%	17	31.5\%
	Avery County	243	160	65.8	112	70.0\%	65	58,0\%			82.43				
	Awiscomp	\%. 1000 \%	\% 623	620\%	429	61.9\%	361	\% 0.14	$10 \% 2$	64.	44**	27)	24 \%	11.	2174
	Coldmell County	944	575	60.9\%	413	722\%	281	67.7\%	1074	717	72.3\%	197	25.4\%	48	24.4\%
	Wen							120	1068	n)	7.0\%	343	3, \%.	山!	U14
	cumpusomis	1001	\%. 617	118\%	394	03.9\%.	d 15	120.6\%						55	39.0\%
	Hickory CMy	389	347	89.2\%	228	65.7\%	204	9.5	381	313					
		2H\%	16	- 6.73	118	71.9\%	, 118	102\% ${ }^{\text {a }}$	20	178	*, ${ }^{\text {a }}$	3)	4.3\%	1.	4ite
	C	419	290	69.2\%	210	72.4\%	147	70.0\%	404	321	79.5\%	141	43.9\%	25	17.7\%
	Onve				-	18		8494		$\bigcirc 33$	(1)	\%. 837	\%,\%	3.	14\%
	Humicomy			No.4\%	\%					194	114	52	26.8\%	11	21.2\%
	Mooreavill Cliy	199	110	55.3\%	82	74.5\%									
		20\%	10	\% 10.0 \%	\% 33	20.6\%		46	$\geqslant 20$	251	*	116	41.		4 6
		653	454	69.3\%	321	70.7\%	239	74.5\%	692	653	94.7\%	287	43.6	32	11.1\%
								$\mathrm{n} 2 \mathrm{~m}$		4	Δu	3	m, \%	\overbrace{i}	\$9
	Sin 2 a	, + .	.							5	64.0\%	77	73.3\%	32	41.6\%
	Mount Alry City	145	102	70.3					¢						
	Wititil coums		$\geqslant 201$. 11.4%	.	42, ${ }^{\text {a }}$,,$\%$, 13	18:	,	806	12.7\%				,0\%
			515	59.9\%	364	70.7\%	6313	66.0\%	920	831	90.3\%	292	35.1\%	13	28.4\%
									1	\% 3	¢ 5 \%	\%) 1121	\% ${ }^{\text {a }}$ 2\%	\% ${ }^{\circ}$	\%163\%
	Yadun Comety	\% 303													

Percent ADM taking Algebra I (or Blology) is the estimated percentage of students in an elghth-grade clasa wha will akke Algebra I (or Blology). Other
Percent ADM taking Algebri (or

112

		N Tested Algebral 1987-88	Perceni ADM Taking Aggebral	N Tested Geometry 1988-89	Percent Algebral Taklng Geometry	N Tested Algebrall 1989.90	Percent Geometry Taklng Algebra II	Eiphth Grade ADM 1985-86	N Tented Blology 1987.88	Percent ADM Taking Blology	N Tested Chemistry 198489	Percent Blology Takins Chemstry	N Tested Physics 1989-90	Percent Chemistry Taking Physics
\mathscr{P}														
		212	67.3\%	175	82.5\%	136	77.7\%	315	275	87.3\%	133	48.4\%	49	36.8\%
	Asherdle City	212,					1024%		$\$ 2 \%$	Y:3:	$\mathbf{1 7 \%}$	4.1%	3	4is
	Curoule Count	18.								1024\%	23	26.4\%	10	43.5\%
	Clay County 122	63	51.6\%	61	96.8\%	0	65.6	85						
	O.,	\$	840		50.0\%	\% $\%$	\% 11.14	\% ${ }^{11}$	15	74\%	11	440	\% 11	2uns.
	Herwood County 673	480	71.3\%	345	71.9\%	259	75.1\%	654	573	87.6\%	221	38.6\%	59	26.7\%
	H				6,1\%		M, 3	\cdots	\$ 87	783\%	\% P 36	\% 40.8 \%	\%\% 43	\% 1.2
		115	dw		4, ${ }^{\text {n }}$		mis	-			76	51.0\%	21	27.6\%
	Hendersonvilie Clty 121	138	114.0\%	106	76.8\%	127	119.8\%			143.3	6	s1.0\%	\% ${ }^{21}$	
	 301	\% 202	\$7.1\%	\% 125	139\%	\% 110	10.3\%	30	26	*)	\%. 145	S\%	\% $\% 35$	\% 243
	con County 243	183	75.3\%	136	74.3\%	131	96.3\%	259	233	90.0\%	137	58.8\%	31	22.6\%
				$\%$	$8,0 \%$	$\geqslant .$	$\text { Y, } \mathbf{~ © ~}$	214	\%102	\$, \%\% $\%$	\cdots	0.0\%	¢ 20	
				13	77.1\%	19	62.0	579	494	85.3\%	19	38.5\%	69	36.3\%
	McDowell County												$\geqslant \%$	
		$\% 12$	\% 1.4	\geqslant	41, 5 \%	\%	3.0	,	+	Mas\%		\%		
	Podk County 182	140	76.9\%	70	50.0\%	3	121.4\%	176	132	75.0\%	50			42.0\%
			344\%	3	¢406		, mus\%		7.	une	1	24.2\%	§\% 817	20365
	156		73.7\%	10	87.8\%		74.3\%	134	124	925	- 73	58.9\%	11	15.1\%
		. 2		\% \% 22		-		3	, 131	144\%	\% P	4il	\%	3is\%
	Yancey County 224	116	51.8\%	6	53.4\%	- 90	145.2\%	241	177	73.4\%	- 75	42.4\%	18	24.0\%

Percent ADM taking Algebra I (or Blology) Is the estimated percentage of students in an eighth.grade class who will take Algebra I (or Blologg). Other Percent ADM taking Akebri 1 (or Blology) percentages represent the estimated perceninge of sudentatnce: Algebra l, Geometry, Algebra Il; or Biology, Chemistry, Physics. asumption that studenta take courws in the
$11:$

Yield and : : fective Yield on Seiective 1989.90 End-or-Course Tests by School System

Yleid is an index of the effectivenes: of a program which takes Into account both participation and performance. It is calcuiated
by multiplying the partcipatinn in l" course by the average percent of core liems answered correcty and then maituphying by io. Effective yleid is a stmilar ind:. 'u'. It count
estimating that they will pass the course.

1:2

Yield and E.ffective Yield on Selective 1989.90 Eind-of.Course Tests by School System

SOUTHEAST REGION School System				*-0.0.0.Geometry.0.0.0.0						Her			-0.0.Physics-...0.0.		
	Number Tested	Yield	Effective Yield	Number Tested	Yleld	Effective Yield	Number Tested	Yield	Effective Yleld	Number Tested	Yleld	Effective Yield	Number Tested	Yleld	Yleld
			9				236	29.						. 3	S.2
			30.2	20	28.5	23.4	23	23.5	20	23	22	20.4	50	4.8	\%
Jones County	93	41.5	34.8	70	40.3	36.	28	14.	132		17.7	16.2	0	5	4
	264	52.	49.8	179	30.	27.8	139	25.3	24.6	118	18.8	17.4	43	7.0	.
Onslow County	946	57.9	52.2	653	34.1	29.8	569	27.9	22.1	51.	27.5	26.2	140	6.9	6.6
Clinton CHy															
	232	43.	37.4	132	24.2	19.8	164	27.5	21.2	167	25.4	20.9	13	20	2.0

Yield ls an index of the effeetiveness of a propram which takes into account both participation and performance. It is cilculated
by multpifing the partdipation in a course by the average percent of core hems answered correctiy and then muitilpiging by 100 .
Effective field is a similar Index but it counts as "partidpating" in the course only those students whose achlevement is above a cutoff point
estimating that they will pass the cours.

Yield and Fifrective Yield on Selective 1989-90 End-of.Course Tests by School System

Yield is an index of the effectiveness of a program which takes into account both participation and performance. Wis calculated
by multiplying the paritcipation in a course by the average percent of core items answered correcuy and then multiplying by 100 .
similar index but it count
estimating that they will pass the course.

Yield and Effective Yield on Selective 1989-90 End-of-Course Tests by School System

Yield is on Index of the effestiveneas of a progr am which takes into account both partiefpation and performance. It is calculated
by multiplying the partcipation in a course by the average percent of core ltems answered correcty and then multupiying by iov. Effective jield is a similar Index but it counts as "participating" in the course only those students whose achievement is above a cutoff polat estimating that they will pass the course.

Vield and E.ffective Yield on Selecilve 1989.90 End-of-Course 'Tests by Schoo! System

Yield is an Index of the effectueness of a piogram which takes into account both participation and performance. It la ralcilated
by multiplying the partucipation in a course by the average percent of core lems answered correcty and then matioplying by acitolf point
cotimuting that they will pass the course
1%

Yield and E.frective Yield on Selective 1989.90 End-of-Course Tests by School System

SOUTHWEST REGION		1			ry			11							
School System	Number Tested	Yleld	Effective Yleld	Number Tested	Yield	Effective Yield	Number Tested	Yleld	Effective Yield	$\begin{aligned} & \text { Number } \\ & \text { Tested } \end{aligned}$	Yield	Effective Yield	Number Tested	Yleld	Ykeld
				284	26.6	23.6	221	221	19.6	257	23.3	21.0	42	4.1	4.0
Cleveland County															
Uncoln County															
Albemarle City	18	72	72.0	104	52.4	50.9	69	38.0	36.3	89	44.0	44.0	20	9.4	9.4
						32.8			2	- 310	216	23.2	-	14	7.2
	, , , \% ${ }^{\text {a }}$	4	¢		34	320									
	169	46.4	36.5	98	27.6	25.0	91	20.0	11.4	113	26.7	23.9	17	3.9	3.7

Yield is an index of the effectiveness of a program which takes into account both participation and performance. It is calculated
by multiplying the partcipation in a course by the average percent of core items answered correcty and then multuplying by ion.
Effective yield is a dmilar index but it countias "particppatigg" In the course only those adudents whose achlevement is above a cutoff point
Effective yield is a smilar index but it cout
estumating that they will pass the course.

198
$12:$

Yield and Fiffective Yield on Selec:ive 1989.90 End-or.Course 'Tests by School System

Yiedd is an Index of the effectiveness of a program which takes into account both particlpation and performance. It is calculated
by multuplying the participallon in a course by the average percent of core litems answered correctly and then multuplying by a estimating that they will pass the course.

Yield and Effective Yleld on Selective 1989-90 End-of-Course'Tests by School System

Yield is an Index of the effectiveness of a program which takes into account both participation and performance. It is calcuiated
by multuplying the participation In a course by the a verage percent of core ltems answered correctly and then multuplying by 100 .
Effective yleld is a simular Index but it counts as "partlcipating" In the course only those students whose achlevernent is above a cutoff point
eatimatlng that they will pass the course.

Average Core Scores and Participation Indices lor School Syateme Grouped by 1089-90 ath Grade Callomle Achievamant Teat Totel Battery Scorea: 85th Percemite and Above

- 5 comm																	
	Apobra low..... Average Participelisen	Ceomery........ A.,ar:30 Participation	Aloobrall....... Averaga Participation	Blology....... Averape Parlictpmion	Chemlatry........ Average Partictpation	Pnyales........ Avarage Parteipation	Engilan I........ Average Participation	U.3.Hbotory....... Avorcge Paricipation	
		Core	muers	cow	Index	Core		Core		Coro	modox	Core			Incox		
	Hewhersoum	\%,	12.1\%	14.6	0.2\%	33.3	40.2\%	30.t:	97.4\%:	09.7	40.8\%	37.0	10,4\%	65.4.	87,7\%:	42,	W.int
	Albemmerle City	43.2	121.2\%	42.3	74.3\%	41.8	50.7\%	43.2	108.4\%	40.4	65.4\%	43.0	13.2\%	88.5	103.3\%	42.2	97.1\%
		20.4,	80.4\%	20.0	312\%	36.8.	49.2\%	41,3.	85, 1 \%	420	50.0\%.	34.4	\$0.20	88.8	10.4\%	4 m	5.3\%
	Ashaboro Chy	42.0	80.6\%	39.5	66.9\%	37.3	47.0\%	43.7	93.6\%	39.4	45.6\%	45.1	6.1\%	60.5	89.1\%	43.4	71.4\%
	Ashrillue	44:3	12:1\%	38. 7	64.5\%	346	120.20	Q0.4.	0.7\%	36.6	42.2\%	40.4	4.6\%	86.8.	92.6\%	11.	\$0.0\%
	Buncombe County	43.2	70.3\%	41.0	80.8x	39.2	80.1\%	41.7	92.0\%	39.6	36.2\%	30.4	9.5\%	08.0	93.1\%	42.2	\%
		4.8.	00.64\%	43.8	39.7\%	30.6	17.8%	40.8	80.6\%	34.2	s.4\%	31.2	10.2.	86.0.	0.3\%.	.\%	Lex
	Devidran County	39.0	73.6\%	35.0	57.8\%	33.0	45.3\%	41.7	82.9\%	38.2	47.2\%	33.7	16.8\%	65.8	93.1\%	42.5	0.7\%
		41\%	M\$\%	38.3.	74,7\%	40.	7, \%	4.2	102\% $\%$	44.6.	\$0,0\%\%	42.7	50\%	\% ${ }^{\text {b }}$	100.0\%	43.2	100.0\%
	Orahem County	30.9	A.4\%	36.0	50.4\%	37.9	49.1\%	35.8	102.1\%	34.6	24.6\%	35.2	8.0\%	64.6	95.2\%	41.5	
	Onmumur	\%0.	H,0\%	34,	8.3\%	31.	50,5\%	nis	410\%	34.4	40.0\%.	30.4	10.4\%	60.8	4		\%
	Qulltord County	43.2	70.4\%	40.2	86.6\%	39.8	47.7\%	42.2	90.2\%	39.3	48.1\%	37.7	11.	68.8	92.6\%	43.8	
		123:	rim\%	\$7\%	81.0\%	3.3	, 34.5\%	20]	20,9\%	30.1	3n.3\%	31.4	1.0\%	15.5	10.5\%:	En, 7 \%	min\%
	Hendersonville City	42.4	153.5\%	42.0	45.2\%	40.6	105.0\%	45.2	127.0\%	39.7	63.6\%	41.0	20.2\%	71.7	119.2\%	. 3	10.7\%
	Wum, emin\#\#\#	10.4.	MA\%	424	31.2\%	37.2	30.0\%	4.0	812\%	38.4	34.4	35.8	12.0\%	tas.	18	4.8.	\%
48	Mrehell Cownty	30.1	102.1\%	37.0	43.2\%	33.8	34.6\%	34.7	110.0\%	42.3	13.7\%	43.2	7.4\%	68.9	00.3\%	42.9	69.2\%
	moun coury	40.5	Wra\%	3 am	4.1\%	$\mathbf{4 . 2}$	3.24	97/	114\%	38.	H04\%	57.	12\%	11.4	11.2\%	4.3	77% 78.4%
	Moornavile city	40.8.	63.0\%	46.9	84.9\%	31.7	80.0\%	43.0	113.2\%	44.7	26.1\%	46.0	6.5\%	1.0		42.8	
	\#W,	273:	\% 0.7%	3×3	\%o.ent	3.1	46.1\%	W0.4	142.4\%	34.0	83.04	38.2	7.3\%	62.1	103.5\%	38.0	78.3\%
	Pemilco County	42.1	74.2\%	40.3	51.6\%	39.1	30.4\%	4.7	68.9\%	35.6	20.0\%	39.0					
	Homment.mide OMy	40.4	61.5\%	\% 42.7	\$1\%	36,8	80,0\%	M 4	181\%	4	44.3\%	41.3	5.0\%	62.9	92.5\%	41.5	7.0\%
	Rockingham County	39.5	57.4\%	38.6	46.2\%	37.5	37.5\%	42.9	80.3\%	38.0				87.			
	finy chy	20.7	0.8\%	38.1	, 11.1%	38.8	88.7\%	41.3		37.7	44.2x	39.7	8.2\%	64.3	08.0\%	42.6	69.0\%
	Swain County	30.0	72.2\%	\% 35.8	79.6\%	34.6	48.1\%	41.0		30.5	30.0\%	29.0	23.8\%	65,	0.4\%	0.2	¢.2*
	Tyeral county	47,	80.0\%	44.8	41.7\%	37.5			$\begin{gathered} \text { 112,97\% } \\ \mathbf{8 0 . 0 \%} \end{gathered}$	42.3	33.5\%	40.5	10.9\%	67.1	91.9\%	44.4	80.4\%
	Union County	42.4	62.4\%	39.8		39.5	37.0\%			34.9	40.2\%	34.	8.0\%	63.4	96.6\%	43.2	\% 2 \%
	Yadkin County	36.5	66,0\%	- 28.4	53.3\%	36.8	3.7\%										

13.

[^19]

$$
\text { ... } \text {...o.U.S. Himory }
$$
Sonool syaum
\[

$$
\begin{aligned}
& \text { verage Participalion Average Paricipation A } \\
& \text { Core Index Core Index }
\end{aligned}
$$
\]

Core index Core Index
Core Index Core modex
avarege Particlpation
Cor Inder

$$
\begin{aligned}
& \text { Average Participation Average Partictpation Average Participation Avorage Pantictantion Average Participation Avarage Participation Averege Partictpation Average Participation } \\
& \text { varage Participation }
\end{aligned}
$$

[^0]: * Reproductions supplied by EDRS are the best that can be macie *
 * from the original document. *

[^1]: ${ }^{1}$ Everybody Counts, A Report to the Nation on the Future of Mathematics Education, National Academy Press, 1989.

[^2]: *Pased on the above states plus Arkansas, California, Delaware, Hawaii, Idaho, Illinois, Indiana, Iowa, Minnesota, Missouri, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Ohio, Oklahoma, Pennsylvania, Texas, Wisconsin, and Wyoming.

 Source: State-by-State Indicators of Course Enrollment in Science and Mathematics, Rolf Blank and Diane Schilder, Council of Chief State School Officers.

[^3]: ${ }^{1}$ Using the same grade level for all courses allows comparisons across courses. Also, eighth grade is generally prior to a high incidence of dropping out. Allowing the eighth-grade year to vary by grade in which students typically take the course controls somewhat for cohort size differences. It should be noted that these indices use course takers in particular grade levels as indicators of participation over time. When statewide participation is calculated by adding the number of eighth-graders in 1985-86 to the ninth-graders in 1986-87, and so on, the difference between the result and the estimate for the 1985-86 cohort using the above method is less than one percentage point.

[^4]: ${ }^{1}$ In previous reports the current year first-month ADM for the ninth grade was used as the denominator for all participation estimates. Ninth-grade ADM varies considerably by school system due to the prevalence of retention the first year of high school and the differences among school systems in high school structure, e.g. 9.12 vs. 10.12 organizations.
 2Participation Index 1 is based on the 8th grade final ADM for the year the students in the typical grade level were in the 8 th grade.
 ${ }^{3}$ Participation Index 2 is based on the $1989-90$ final ADM for the typical grade level of students in the course and is similar to the one used by the State-by-State Indicators Project.
 ${ }^{4}$ In a few cases the participation index goes over 100 percent when calculated at the school system level. This may occur in small school systems when students in one suhool system are allowed to transfer to another school system for high school only, or when program changes are implemented that change the grade level in which students take the course.

[^5]: ${ }^{1}$ These percentages are based on the assumption that all students take the courses in the sequence above. While this sequence is typical, variations do occur, e.g. students who take Algebra II immediately after Algebra I.
 ${ }^{2}$ Percent passing is based on the final grades teachers anticipated giving students at the time the the end-of-course tests were administered.

[^6]: ${ }^{1}$ Due to space limitations on the answer sheet, post high school plans were nct collected for U.S. History students.

[^7]: ${ }^{1}$ The end-of-course core tests vary in length: Algebra I, Geometry, Chemistry, Physics, and U.S. History contain 60 items; Algebra II contains 56 items; Biology, 65 items; and English I, 100 items.

[^8]: ${ }^{1}$ Teachers record the final grades they anticipate giving each students at the time of test administration.

[^9]: ${ }^{1}$ The companion subject area volumes contain average scores for each letter grade group and percentages of students attaining each letter grade for all public school systems. In those tables it can be seen that although there are different standards across school systems, within most school systems the average score for each letter grade group differs in a systematic way, paralleling the performance on the tests.

[^10]: ${ }^{1}$ Curtis McKnight, et. al., The Underachieving Curriculum: Assessing U.S. School Mathematics from an International Perspective. International Association for the Evaluation of Education Achievemeni, Stipes Publishing Company, Champaign, IL, 1987. McKnight did not quantify yield. The suggestion for quantifying yield as described above was made by Randy Harter, Mathematics Supervisor for Buncombe County Schools. He also suggested the effective yield index.

[^11]: ${ }^{1}$ The CAT was used as an indicator of overall ability or achievement in advising students to take Algebra I. There are other tests that measure the likelihood of success in Algebra I.

[^12]: ${ }^{1} \mathrm{~T}$ means tic. Participation indices are in parentheses.

[^13]: ${ }^{1} \mathrm{~T}$ means tie. Participation indices are in parentheses.

[^14]: ${ }^{1} \mathrm{~T}$ means tie.

[^15]: ${ }^{1} \mathrm{~T}$ means tie.

[^16]: ${ }^{1} \mathrm{~T}$ means tie.

[^17]: ${ }^{1} \mathrm{~T}$ means tie.

[^18]: Percent ADM taklng Algebra I (or Blology) is the entimated percentage of studenisin an elghth-grade class wha will iake Aigebra I (or Biomogy). Other percentages represent the estumated percentage of students in one course taking the next course in the requence. All calculations are bensed on the assumption that students teke courses in the following sequence: Algebra I, Geometry, Algebra Il; or Biolugy, Chemistry, Physics.

[^19]: Nole: School systems are arranged in alphabetical order. Parlicipation Index is based on the 8th grade ADM the year most sludents were in the git grade

